Assessment of multi-strain PGPRs biofertilization as compared to sole-strain or mineral n-fertilization on wheat plants grown in clayey soil in Egypt

2007 ◽  
Vol 25 (1) ◽  
Author(s):  
G A Mekhemar ◽  
F Sh Badawi ◽  
T E Radwan ◽  
B A Hassona
Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1300
Author(s):  
Janusz Prusiński ◽  
Anna Baturo-Cieśniewska ◽  
Magdalena Borowska

A growing interest in soybean cultivation in Poland has been observed in the recent years, however it faces a lot of difficulties resulting from a poorly understood effectiveness of plant nitrogen fertilization and from the introduction of Bradyrhizobium japonicum to the environment. The aim of the study was to evaluate the consistency of response of two soybean cultivars to three different rates of mineral N fertilization and two seed inoculation treatments with B. japonicum in field conditions over four years regardless of previous B. japonicum presence in the soil. A highly-diversified-over-years rainfall and temperature in the growing season do not allow for a definite statement of the differences resulting from seed inoculation and mineral N fertilization applied separately or jointly in soybean. A high sensitivity of the nodulation process to rainfall deficits was noted, which resulted in a decreased amount of B. japonicum DNA measured in qPCR and dry matter of nodules. ‘Annushka’ demonstrated a higher yield of seeds and protein, higher plants and the 1st pod setting. ‘Aldana’, due to a significant decrease in plant density, produced a higher number of pods, seeds per pod and the 1000 seed weight per plant. Both cultivars responded with an increase in the seed yield after seed inoculation with HiStick, also with an application of 30 and 60 kg N, as well as with Nitragina with 60 kg N.


Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.


2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 456 ◽  
Author(s):  
Massimiliano Cardinale ◽  
Stefan Ratering ◽  
Aitak Sadeghi ◽  
Sushil Pokhrel ◽  
Bernd Honermeier ◽  
...  

The effects of different agronomic practices, such as fertilization regimes, can be experimentally tested in long-term experiments (LTE). Here, we aimed to evaluate the effect of different nitrogen fertilizations on the bacterial microbiota in both rhizosphere and bulk soil of sugar beet, in the Giessen-LTE (Germany). Fertilization treatments included mineral-N, manure, mineral-N + manure and no N-amendment. Metabarcoding and co-occurrence analysis of 16S rRNA genes, qPCR of amoA, nirK, nirS, nosZ-I and nosZ-II genes and soil physico-chemical analyses were performed. The effect of the fertilization treatments was more evident in the bulk soil, involving 33.1% of the microbiota. Co-occurrence analysis showed a rhizosphere cluster, dominated by Proteobacteria, Actinobacteria and Verrucomicrobia (hub taxa: Betaproteobacteriales), and a bulk soil cluster, dominated by Acidobacteria, Gemmatominadetes and “Latescibacteria” (hub taxa: Acidobacteria). In the bulk soil, mineral N-fertilization reduced nirK, amoA, nosZ-I and nosZ-II genes. Thirteen Operational taxonomic units (OTUs) showed 23 negative correlations with gene relative abundances. These OTUs likely represent opportunistic species that profited from the amended mineral-N and outgrew the species carrying N-cycle genes. Our results indicate trajectories for future research on soil microbiome in LTE and add new experimental evidence that will be helpful for sustainable management of nitrogen fertilizations on arable soils.


2015 ◽  
Vol 66 (2) ◽  
pp. 52-56 ◽  
Author(s):  
Edmund Hajduk ◽  
Stanisław Właśniewski ◽  
Ewa Szpunar-Krok

AbstractThe paper presents the results of a 3-year field experiment designed to evaluate the content of organic carbon in brown soil (Haplic Cambisol Dystric) developed from a light loamy sand under legumes cultivation. Experimental factors were: species of legume crop (colorful-blooming pea(Pisum sativum), chickling vetch(Lathyrus sativus), narrow-leafed lupin(Lupinus angustifolius), methods of legumes tillage (legumes in pure culture and in mixture with naked oats) and mineral N fertilization (0, 30, 60, 90 kg N·ha−1). Cultivation of legumes on sandy soil did not result in an increase of organic carbon content in the soil after harvest as compared to the initial situation, i.e. 7.39 vs. 7.76 g·kg−1dry matter (DM), on average, respectively. However, there was the beneficial effect of this group of plants on soil abundance in organic matter, the manifestation of which was higher content of organic carbon in soils after legume harvest as compared to soils with oats grown (7.21 g·kg−1DM, on average). Among experimental crops, cultivation of pea exerted the most positive action to organic carbon content (7.58 g·kg−1, after harvest, on average), whereas narrow-leaved lupin had the least effect on organic carbon content (7.23 g·kg−1, on average). Pure culture and greater intensity of legume cultivation associated with the use of higher doses of mineral nitrogen caused less reduction in organic carbon content in soils after harvest.


Data in Brief ◽  
2018 ◽  
Vol 21 ◽  
pp. 1119-1124
Author(s):  
Sophie Génermont ◽  
Maharavo Marie Julie Ramanantenasoa ◽  
Karine Dufosse ◽  
Olivier Maury ◽  
Catherine Mignolet ◽  
...  

Author(s):  
Hermann Stumpe ◽  
Joachim Garz ◽  
Wilfried Schliephake ◽  
Lutz Wittenmayer ◽  
Wolfgang Merbach

2009 ◽  
Vol 147 (4) ◽  
pp. 479-491 ◽  
Author(s):  
K. SAARIJÄRVI ◽  
P. VIRKAJÄRVI

SUMMARYThe aim of the present study was to investigate the nitrogen (N) dynamics in soil and N utilization by grass in dung pats and urine patches, and to quantify the amount of soluble organic N (SON) in grassland soil. The experiment was conducted in 2003/04 at MTT Agrifood Research, Maaninka, Finland. The study consisted of three treatments: dung pats, urine patches and a control patch without excreta. The soil (to a depth of 0·6 m) and herbage were sampled on 10 occasions over the course of 1 year. TN and SON in soil averaged 14 400 and 60 kg/ha N, respectively. Changes in soil mineral N were short-lived and a large proportion of excreta N was immobilized. The grass took up 27 kg excretal N/ha from the dung pat and 71 kg N/ha from the urine patch, which equals 0·07 and 0·19 of the excretal N given to each treatment, respectively. As a large proportion of the excretal N is immobilized and accumulates in soil, re-evaluation of the recommendations for N fertilization of pastures older than 2 years is justified.


Sign in / Sign up

Export Citation Format

Share Document