scholarly journals Crop rotation versus monoculture; yield, N yield and ear fraction of silage maize at different levels of mineral N fertilization

2001 ◽  
Vol 49 (4) ◽  
pp. 405-425 ◽  
Author(s):  
F. Nevens ◽  
D. Reheul
Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1217
Author(s):  
Jiří Balík ◽  
Martin Kulhánek ◽  
Jindřich Černý ◽  
Ondřej Sedlář ◽  
Pavel Suran

Soil organic matter carbon (CSOM) compounds degradation was observed in long-term field experiments with silage maize monoculture. Over a period of 26 years, the content of carbon in topsoil decreased by 22% in control unfertilized plots compared to 25% and 26% in treatments fertilized annually with mineral nitrogen. With annual wheat straw application (together with mineral N), the content of CSOM decreased by 8%. Contrary to that, the annual application of farmyard manure resulted in a CSOM increase of 16%. The ratio of carbon produced by maize related to total topsoil CSOM content ranged between 8.1–11.8%. In plots with mineral N fertilization, this ratio was always higher than in the unfertilized control plots. With the weaker soil extraction agent (CaCl2), the ratio of carbon produced by maize was determined to be 17.9–20.7%. With stronger extraction agent (pyrophosphate) it was only 10.2–14.6%. This shows that maize produced mostly unstable carbon compounds. Mineral N application resulted in stronger mineralization of original and stable organic matter compared to the unfertilized control. However, the increase of maize-produced carbon content in fertilized plots did not compensate for the decrease of “old” organic matter. As a result, a tendency to decrease total CSOM content in plots with mineral N applied was observed.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1300
Author(s):  
Janusz Prusiński ◽  
Anna Baturo-Cieśniewska ◽  
Magdalena Borowska

A growing interest in soybean cultivation in Poland has been observed in the recent years, however it faces a lot of difficulties resulting from a poorly understood effectiveness of plant nitrogen fertilization and from the introduction of Bradyrhizobium japonicum to the environment. The aim of the study was to evaluate the consistency of response of two soybean cultivars to three different rates of mineral N fertilization and two seed inoculation treatments with B. japonicum in field conditions over four years regardless of previous B. japonicum presence in the soil. A highly-diversified-over-years rainfall and temperature in the growing season do not allow for a definite statement of the differences resulting from seed inoculation and mineral N fertilization applied separately or jointly in soybean. A high sensitivity of the nodulation process to rainfall deficits was noted, which resulted in a decreased amount of B. japonicum DNA measured in qPCR and dry matter of nodules. ‘Annushka’ demonstrated a higher yield of seeds and protein, higher plants and the 1st pod setting. ‘Aldana’, due to a significant decrease in plant density, produced a higher number of pods, seeds per pod and the 1000 seed weight per plant. Both cultivars responded with an increase in the seed yield after seed inoculation with HiStick, also with an application of 30 and 60 kg N, as well as with Nitragina with 60 kg N.


Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.


2017 ◽  
Vol 8 (2) ◽  
pp. 288-292 ◽  
Author(s):  
R. Casa ◽  
F. Pelosi ◽  
S. Pascucci ◽  
F. Fontana ◽  
F. Castaldi ◽  
...  

Nitrogen fertilization of silage maize in Central Italy is typically carried out with two applications at early stages of crop development: 2nd (V2) and 6th (V6) leaf respectively. In such conditions, the crop has not yet fully covered the soil and proximal or remote sensing of the canopy is hindered by the strong soil background signal. There is thus great interest in rapid and inexpensive approaches to N fertilization prescription. Therefore, an indirect method for inferring information on yield potential and soil variability, through a field-based clustering of multi-temporal satellite data, has been developed using archive Landsat images to identify temporally constant patterns. This method is potentially useful for the creation of prescription maps. The usefulness of the method was evaluated during an N fertilisation field trial in Maccarese (Central Italy), in 2016. At the V2 stage, both uniform and variable rate applications were performed and compared. A pseudo-cross variogram and a standardized ordinary co-kriging methodology was used to highlight spatially variable significant differences among the treatments.


2021 ◽  
Author(s):  
Nakian Kim ◽  
Gevan D. Behnke ◽  
María B. Villamil

Abstract. Modern agricultural systems rely on inorganic nitrogen (N) fertilization to enhance crop yields, but its overuse may negatively affect soil properties. Our objective was to investigate the effect of long-term N fertilization on key soil properties under continuous corn [Zea mays L.] (CCC) and both the corn (Cs) and soybean [Glycine max L. Merr.] (Sc) phases of a corn-soybean rotation. Research plots were established in 1981 with treatments arranged as a split-plot design in a randomized complete block design with three replications. The main plot was crop rotation (CCC, Cs, and Sc), and the subplots were N fertilizer rates of 0 kg N ha−1 (N0, controls), and 202 kg N ha−1, and 269 kg N ha−1 (N202, and N269, respectively). After 36 years and within the CCC, the yearly addition of N269 compared to unfertilized controls significantly increased cation exchange capacity (CEC, 65 % higher under N269) and acidified the top 15 cm of the soil (pH 4.8 vs. pH 6.5). Soil organic matter (SOM) and total carbon stocks (TCs) were not affected by treatments, yet water aggregate stability (WAS) decreased by 6.7 % within the soybean phase of the CS rotation compared to CCC. Soil bulk density (BD) decreased with increased fertilization by 5 % from N0 to N269. Although ammonium (NH4+) did not differ by treatments, nitrate (NO3−) increased eight-fold with N269 compared to N0, implying increased nitrification. Soils of unfertilized controls under CCC have over twice the available phosphorus level (P) and 40 % more potassium (K) than the soils of fertilized plots (N202 and N269). On average, corn yields increased 60 % with N fertilization compared to N0. Likewise, under N0, rotated corn yielded 45 % more than CCC; the addition of N (N202 and N269) decreased the crop rotation benefit to 17 %. Our results indicated that due to the increased level of corn residues returned to the soil in fertilized systems, long-term N fertilization improved WAS and BD, yet not SOM, at the cost of significant soil acidification and greater risk of N leaching and increased nitrous oxide emissions.


2003 ◽  
Vol 83 (4) ◽  
pp. 667-680 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
F. Selles ◽  
B. G. McConkey ◽  
P. G. Jefferson ◽  
...  

Producers in the semiarid Canadian prairies rely on frequent summerfallowing (F) to conserve water, control weed infestations, and maximize soil mineral N reserves, but this practice often results in soil degradation. A crop rotation experiment was initiated in 1987 on a medium-textured, Orthic Brown Chernozem at Swift Current, Saskatchewan, to determine the most ideal cropping frequency for wheat in this region and whether a fixed rotation such as fallow-wheat (Triticum aestivum L.) - wheat (F-W-W) or F-W-W-W would be more effective than flexible rotations in which fallowing is decided each spring based on criteria such as available soil water (if water), or the need to control perennial weed infestations (if weeds). The study also compared the production of traditional Canada Western Red Spring (CWRS) wheat class with the newer higher-yielding (Hy), Canada Prairie Spring (CPS) wheat class. We analyzed results of six rotations over the first 12 yr of the study. The rotations included F-W-W, F-W-W-W, F-Hy-Hy, Continuous wheat (Cont W), Cont W (if weeds), and Cont W (if water). Reduced tillage management was used and stubble was cut tall to enhance snowtrap. Fertilizer N was applied based on soil tests and fertilizer P was applied based on the general recommendations for the region. Over the 1988–1999 period, weather conditions were generally favourable and yields were above average for this region. Canada Prairie Spring wheat outyielded CWRS by 32% when grown on fallow and by 17% when grown on stubble; however, straw yields of the two wheat classes were similar on fallow and CPS was 11% less than CWRS on stubble. Harvest index (HI) averaged 44% for CPS and 37% for CWRS wheat. Water use efficiency for CWRS wheat grown on fallow averaged 7.2 kg ha-1 mm-1 and for CPS 9.4; when grown on stubble the respective values were 6.3 and 7.5 kg ha-1 mm-1. Grain N concentration for CWRS was slightly higher for wheat grown on fallow (25.7 g kg-1) than on stubble (24.5 g kg-1), but was similar for CPS wheat on grown on fallow and stubble (21.9 g kg-1). Straw N concentration averaged 3.8 g kg-1 for CWRS and 4.4 g kg-1 for CPS. Nitrogen yield for grain from CPS was 9% greater than from CWRS when grown on fallow, but there was no effect of wheat class when grown on stubble. Nitrogen yield of CPS straw was 15% greater than for CWRS when grown on fallow, but on stubble N yield was generally not affected by wheat class. Nitrogen harvest index (NHI) averaged about 80% for both wheat classes, whether grown on fallow or stubble. On a rotation basis, grain produced with F-W-W was 1502 kg ha-1 yr-1. The F-W-W-W and Cont W (if weeds) rotations produced 9% more grain than F-W-W, while Cont W (if water) produced 24% more, F-Hy-Hy produced 26% more, and Cont W produced 30% more than F-W-W. Nitrogen production in the grain, straw and aboveground plant material was lowest in F-W-W, highest in Cont W, and intermediate for other rotations. Although the economic and soil quality assessments have yet to be completed, a preliminary conclusion based on crop production characteristics alone suggests that a flexible cropping system in which available soil water in spring is used as the determining criterion is superior to a fixed F-W-W or F-W-W-W rotation. Key words: Yield, N concentration, N yield, water deficit, wheat classes, regressions


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 456 ◽  
Author(s):  
Massimiliano Cardinale ◽  
Stefan Ratering ◽  
Aitak Sadeghi ◽  
Sushil Pokhrel ◽  
Bernd Honermeier ◽  
...  

The effects of different agronomic practices, such as fertilization regimes, can be experimentally tested in long-term experiments (LTE). Here, we aimed to evaluate the effect of different nitrogen fertilizations on the bacterial microbiota in both rhizosphere and bulk soil of sugar beet, in the Giessen-LTE (Germany). Fertilization treatments included mineral-N, manure, mineral-N + manure and no N-amendment. Metabarcoding and co-occurrence analysis of 16S rRNA genes, qPCR of amoA, nirK, nirS, nosZ-I and nosZ-II genes and soil physico-chemical analyses were performed. The effect of the fertilization treatments was more evident in the bulk soil, involving 33.1% of the microbiota. Co-occurrence analysis showed a rhizosphere cluster, dominated by Proteobacteria, Actinobacteria and Verrucomicrobia (hub taxa: Betaproteobacteriales), and a bulk soil cluster, dominated by Acidobacteria, Gemmatominadetes and “Latescibacteria” (hub taxa: Acidobacteria). In the bulk soil, mineral N-fertilization reduced nirK, amoA, nosZ-I and nosZ-II genes. Thirteen Operational taxonomic units (OTUs) showed 23 negative correlations with gene relative abundances. These OTUs likely represent opportunistic species that profited from the amended mineral-N and outgrew the species carrying N-cycle genes. Our results indicate trajectories for future research on soil microbiome in LTE and add new experimental evidence that will be helpful for sustainable management of nitrogen fertilizations on arable soils.


2015 ◽  
Vol 66 (2) ◽  
pp. 52-56 ◽  
Author(s):  
Edmund Hajduk ◽  
Stanisław Właśniewski ◽  
Ewa Szpunar-Krok

AbstractThe paper presents the results of a 3-year field experiment designed to evaluate the content of organic carbon in brown soil (Haplic Cambisol Dystric) developed from a light loamy sand under legumes cultivation. Experimental factors were: species of legume crop (colorful-blooming pea(Pisum sativum), chickling vetch(Lathyrus sativus), narrow-leafed lupin(Lupinus angustifolius), methods of legumes tillage (legumes in pure culture and in mixture with naked oats) and mineral N fertilization (0, 30, 60, 90 kg N·ha−1). Cultivation of legumes on sandy soil did not result in an increase of organic carbon content in the soil after harvest as compared to the initial situation, i.e. 7.39 vs. 7.76 g·kg−1dry matter (DM), on average, respectively. However, there was the beneficial effect of this group of plants on soil abundance in organic matter, the manifestation of which was higher content of organic carbon in soils after legume harvest as compared to soils with oats grown (7.21 g·kg−1DM, on average). Among experimental crops, cultivation of pea exerted the most positive action to organic carbon content (7.58 g·kg−1, after harvest, on average), whereas narrow-leaved lupin had the least effect on organic carbon content (7.23 g·kg−1, on average). Pure culture and greater intensity of legume cultivation associated with the use of higher doses of mineral nitrogen caused less reduction in organic carbon content in soils after harvest.


1999 ◽  
Vol 79 (3) ◽  
pp. 439-446 ◽  
Author(s):  
H. Li ◽  
L. É. Parent ◽  
C. Tremblay ◽  
A. Karam

Meadow soils could supply significant amounts of N for several years and reduce N requirements for the potato (Solanum tuberosum L.). We examined a combination of three crop sequences, three cultivars and six N rates in relation to tuber yield and quality. Superior, Kennebec and Snowden were grown as follows on a Tilly silty loam between 1993 and 1995: (1) 3-yr continuous potato cropping of Superior, (2) 3-yr continuous potato cropping starting with Snowden and followed by 2 yr of Kennebec, and (3) 3-yr sequence of Kennebec, oat (Avena sativa L. 'Marion') and Superior. There were six N treatments (0, 70, 105, 140, 175 and 210 kg N ha−1) and a split application of 140 kg N ha−1 (half at seeding and half before hilling). The seasons were either favorable to growth (1993), relatively wet (1994) or relatively dry (1995). In 1993 and 1994, total yield varied between 37 and 50 t ha−1. In 1995, continuous cropping of Kennebec and Superior produced 28 t ha−1 compared with 37 t ha−1 under crop rotation. The rotation increased total yield of Superior by 34% and graded yield by 42% in 1995. The N requirement was closely related to yield, rather than cultivar. Compared with continuous cropping of Superior, tuber-quality index was highest with the rotation for rhizoctonia (Rhizoctonia solani) (67 vs. 57) and common scab (Streptomyces scabies) (90 vs. 82). The incidence of both diseases decreased when at least 70 kg N ha−1 was applied. For common scab, skin coverages was higher at rates of 0, 175 and 210 kg N ha−1 than at intermediate rates of 70–140 kg N ha−1. Mineral N accumulated in the 0–60-cm layer in the interrow and increased rapidly when N rates exceeded 105 kg N ha−1. After sod breakup an N rate in the range of 70–100 kg N ha−1 and crop rotation with cereals sustained the productivity of the potato during 3 yr while minimizing the environmental impact of mineral N. Key words: Crop rotation, common scab, rhizoctonia, reduced N rates, Solanum tuberosum L.


Sign in / Sign up

Export Citation Format

Share Document