scholarly journals Evaluation Of Okra Cultivars And Breeding Lines For Agronomic Traits In Umudike In Southeastern Nigeria

2008 ◽  
Vol 7 (1) ◽  
Author(s):  
PI Okocha ◽  
IN Chinatu
Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2525
Author(s):  
Xuan Wang ◽  
Xinying Guo ◽  
Xixi Ma ◽  
Liang Luo ◽  
Yaoyu Fang ◽  
...  

Brown planthopper, blast, and bacterial blight are the main biotic stressors of rice and can cause a massive loss in rice production. Aroma is an important character of rice quality. It is of far-reaching significance to breed resistant and high-quality varieties using germplasms with objective genes. In this study, the introgression and pyramiding of brown planthopper (BPH), blast, and bacterial leaf blight (BLB) resistance genes and aroma genes into elite rice maintainers and restorers were conducted through conventional cross-breeding coupled with the marker-assisted selection (MAS) breeding method. Single-plant selection was performed from F2 onwards to select desirable recombinants possessing alleles of interest with suitable phenotypes. Respective linked markers were used in each generation from intercrossing to the F7 generation for tracking the presence of targeted genes. A total of 74 improved lines (ILs) have been developed which possess a combination of 1 to 4 genes for BPH, blast, and BLB resistance and aroma. These ILs showed moderate to high resistance to multiple biotic stresses (BPH, blast and BLB) or aromatic fragrance without obvious negative effects on agronomic traits. As multiple resistance and aromatic traits have become significant objectives in rice breeding, these resistance and/or aroma gene introgressed or pyramided lines have important application prospects. Core ideas: (1) marker-assisted breeding was used to pyramid multiple genes for an elite breeding line; (2) improved lines with the introgression of 1–4 genes were developed to achieve high resistance against various biotic stresses and aroma; (3) new lines were used as donor parents to introgress multiple genes in other genetic backgrounds.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Dorcas Ibitoye ◽  
Adesike Kolawole ◽  
Roseline Feyisola

Tomato (Solanum lycopersicum L.) is a broadly consumed fruit vegetable globally. It is one of the research mandate vegetable of the National Horticultural Research Institute (NIHORT), Ibadan, Nigeria. The institute’s contains diverse collections of tomato accessions and wild relatives, without utilization information for the African continent. With the decline in diversity and potential of cultivars, a robust tomato breeding pipeline with broad genetic base that eliminates redundancy in the development of lines with desired horticultural traits is paramount. This study evaluated the mean performance and variations of thirteen wild tomato accessions obtained from the C.M. Rick Tomato Genetic Resource Center, University of California, Davis, USA, evaluated for agronomic, nutritional and physicochemical traits under a rain forest zone in Nigeria. The accessions were planted and grown in three replications with randomized complete block design. Agronomic traits, physicochemical and nutritional parameters were measured and analyzed. There was significant (P < 0.001) variation among accessions for all traits measured. Accession LA0130 was separated from others by cluster analysis and was outstanding for its unique attributes which include: fruit yield parameters, total soluble solids, acidity and content. The principal component analysis suggests fruit yield related traits, acidity and contributed most to the variation among the 13 accessions. The results obtained can be used to breed materials adapted to a rain forest . These wild tomato accessions have genes with desirable agronomic, nutritional and physicochemical traits that could be into breeding lines to improve commercial tomato varieties.


2013 ◽  
Vol 152 (6) ◽  
pp. 873-884 ◽  
Author(s):  
R. MOHAMMADI

SUMMARYRainfall and temperature are unpredictable in Mediterranean environments, which results in inconsistent environmental conditions for crop growth and a critical source of uncertainty for farmers and growers. The objectives of the present study were to: (i) quantify and compare the plasticity of durum breeding lines, a modern cultivar and landraces on the basis of yield and agronomic traits and (ii) study associations between plasticity of yield and plasticity of agronomic and phenological traits. Plasticity was quantified using linear models for 11 durum breeding lines, one modern cultivar and two landraces grown in 21 diversified environments. The results showed that the effects due to environment, genotype and genotype×environment (G×E) interaction were significant, which indicates the existence of differences among genotypes for plasticity. Yield ranged from 1939 to 2419 kg/ha across environments and the range of plasticity was 0·66–1·13. The breeding lines and the modern cultivar had higher grain yields compared with the landraces at the same level of plasticity. The landraces with below-average plasticity in yield were characterized as tall in stature and late in heading and maturity, whereas the breeding lines and modern cultivar with above-average plasticity in yield were early in heading and maturity, semi-dwarf and high-yielding, which indicates the success in breeding the materials for unpredictable environmental conditions. In conclusion, yield plasticity was associated with yield improvement and high yield plasticity tends to associate with earliness, shorter plants and low grain weight.


Author(s):  
Algė Leistrumaitė ◽  
Vanda Paplauskienė ◽  
Audronė Mašauskienė

Evaluation and Use of Genetic Resources in Spring Malting Barley Breeding in Lithuania During the period 2004-2006, grain yield stability and malt quality characteristics of 47 spring barley varieties and 55 promising breeding lines from the collection of spring barley genetic resources were investigated at the Lithuanian Institute of Agriculture (LIA). The growing conditions in 2004 were fairly normal compared with the long-term mean, and the years 2005 and 2006 were rather dry. The varieties and breeding lines tested showed from medium to high variation of grain > 2.5 mm yield (CV 11.5-34.3%) and medium variation of grain yield (CV 4.39-13.33%). However, high temperatures and drought in June of 2006 caused a low grain > 2.5 mm yield (by on average 55.0-67.8%). Promising breeding lines were characterised as having higher grain yield and extract output per ha compared with barley varieties. However, the data showed that grain grading 2.5 mm should be improved for the breeding lines. Using the software STABLE we estimated the stability of malting barley quality traits in relation to weather conditions during the crop year, genotype properties for varieties and breeding lines, as well as the interactions of variety and weather conditions. The selection of lines promising in terms of grain yield, > 2.5 mm grain yield and extract yield, was based on their ability to realise the genetic potential in various growing conditions. The highest score in integral assessment of grain yield, grain > 2.5 mm yield and extract yield was identified for the varieties Tocada', Sebastian', Scarlett' and breeding lines: 7939-1, 7661-1, and 8080-4. The varieties and breeding lines that exhibited high grain stability, high grain quality and other agronomic traits were utilised in further breeding programmes.


1998 ◽  
Vol 96 (6-7) ◽  
pp. 878-885 ◽  
Author(s):  
E. Garcia ◽  
M. Jamilena ◽  
J. I. Alvarez ◽  
T. Arnedo ◽  
J. L. Oliver ◽  
...  

2019 ◽  
Vol 11 (30) ◽  
pp. 178-187
Author(s):  
Alireza Nabipour ◽  
Mohammad Norouzi ◽  
◽  

2021 ◽  
Vol 4 (1) ◽  
pp. 1-11
Author(s):  
Mesfin Tadele ◽  
Mussa Jarso ◽  
Sisay Argaye ◽  
Asnakech Tekalign ◽  
Nigat Tilahun ◽  
...  

Faba bean (Vicia faba L.) is a high value crop in Ethiopia and has versatile uses. The national faba bean breeding program concentrates on the three major traits (grain yield, disease resistance and seed size) of the crop for varietal release for commercial production. Hence, ten faba bean genotypes were evaluated at Adet, Areka, Bekoji, Haramaya, Holetta and Jimma during the main cropping seasons of 2018 and 2019 using a randomized complete block design with four replications with the objectives to select the genotype with best performance in terms of important agronomic traits like grain yield, disease resistance, large seed size and other desirable agronomic traits for high potential production areas in Ethiopia. The combined analysis of variance across locations revealed that there is highly significant (P < 0.01) variation among the tested genotypes for grain yield, 1000-seeds weight, number of pods per plant, and days to 90% physiological maturity. The genotype EH011089-3 showed better performance than the tested genotypes having comparable grain yield performance (3803 kgha-1) with the two standard checks, Numan and Gora (3790 and 3897 kgha-1, respectively) while it had the highest 1000-seeds weight (1065 g) compared to the two standard checks, Numan and Gora (937 g and 786 g, respectively), i.e., 13.7% and 35.5% advantage, over the two standard checks, respectively. Additionally, EH011089-3 had better resistance for chocolate spot and rust diseases. Therefore, EH011089-3 was the best over the tested varieties and breeding lines. Genotype EH011089-3 is recommended for varietal release for commercial production all over in Ethiopia.


2014 ◽  
Vol 15 (2) ◽  
pp. 55
Author(s):  
Fatimah Fatimah ◽  
Joko Prasetiyono ◽  
Ahmad Dadang ◽  
Tasliah Tasliah

Early-maturing and high-yielding rice variety is very useful for increasing rice production in Indonesia. The aim of this research was to develop new lines of Indonesian rice containing Hd2 gene using Code variety as a recipient parent and Nipponbare variety as a donor parent through targetted MAB approach using RM1362 and RM7601 in chromosom 7 for foreground selection. After two generations of backcrossing, the positive alleles of Hd2 gene from Nipponbare had successfully trans-ferred into Code. The plant number CdNp_29 in BC2F2 popula-tion had the highest genome recovery of 82.7%. The twelve BC2F3 plants were selected for self-pollination to generate BC2F4. These selected lines that carried the Hd2 gene were screened in the greenhouse for the evaluation of heading date and agronomic traits. All improved lines had Hd2 gene similar to the donor parent Nipponbare. The heading date of the breeding lines ranged from 73 to 89 days (Code 85 days) or fill the third criterion of rice maturity that is 103-104 days compared to Code of 116-119 days, whereas their agronomic performances were similar with that of Code. Application of MABc for im-proving rice early maturity has accelerated the development and selection in early generation of superior lines having genetic background of Code. It is expected that the newly developed lines of Code will be utilized to increase rice production in Indonesia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yves Emendack ◽  
Jacobo Sanchez ◽  
Chad Hayes ◽  
Matthew Nesbitt ◽  
Haydee Laza ◽  
...  

AbstractEarly planted sorghum usually experiences cooler day/night temperatures, which may result in delayed growth, floral initiation, and infertile pollen, limiting productivity in high altitudes and temperate regions. Genetic variability for cold tolerance in sorghum has been evaluated by characterizing germination, emergence, vigor, and seedling growth under sub-optimal temperatures. However, the compounded effect of early season cold on plant growth and development and subsequent variability in potential grain yield losses has not been evaluated. Agro-morphological and physiological responses of sorghum grown under early-, mid-, and standard planting dates in West Texas were characterized from seed-to-seed. A set of diverse lines and hybrids with two major sources of tolerance, and previously selected for seedling cold tolerance were used. These were evaluated with a standard commercial hybrid known for its seedling cold tolerance and some cold susceptible breeding lines as checks. Variabilities in assessed parameters at seedling, early vegetative, and maturity stages were observed across planting dates for genotypes and sources of cold tolerance. Panicle initiation was delayed, and panicle size reduced, resulting in decreased grain yields under early and mid-planting dates. Coupled with final germination percent, panicle width and area were significant unique predictors of yield under early and mid-planting dates. Significant variability in performance was observed not only between cold tolerant and susceptible checks, but noticeably between sources of cold tolerance, with the Ethiopian highland sources having lesser yield penalties than their Chinese counterparts. Thus, screening for cold tolerance should not be limited to early seedling characterization but should also consider agronomic traits that may affect yield penalties depending on the sources of tolerance.


Crops ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 54-67
Author(s):  
Alexey Morgounov ◽  
Fatih Özdemir ◽  
Mesut Keser ◽  
Beyhan Akin ◽  
Abdelfattah A. Dababat ◽  
...  

Collection of wheat landraces (WLR) was conducted in Afghanistan, Iran, and Turkey in 2010–2014. A representative subset of this collection was used in the current study and included 45 bread wheat landraces from Turkey, 19 from Iran, and 20 from Afghanistan. This material was supplemented by 73 modern cultivars and breeding lines adapted to semiarid conditions and irrigated conditions. Overall, 157 genotypes were tested in Turkey in 2018 and 2019 and in Afghanistan and Iran in 2019 under rainfed conditions to compare performance of WLR and modern material. The germplasm was genotyped using a high density Illumina Infinium 25K wheat SNP array and KASP markers for agronomic traits. The average grain yield ranged between 2.2 and 4.0 t/ha depending on the site and year. Three groups of landraces demonstrated similar average grain yield, though Afghanistan material was slightly higher yielding not only in Afghanistan but also in Turkey. Modern material outyielded the landraces in two environments out of four. The highest yielding landraces were competitive with the best modern germplasm. Frequency of gene Sus2-2B affecting 1000 kernel weight was 64% in WLR and only 3% in modern material. Presence of positive allele of Sus2-2B increased 1000 kernel weight by nearly 4%. Breeding strategy to improved landraces and modern cultivars is discussed.


Sign in / Sign up

Export Citation Format

Share Document