scholarly journals Etude des paramètres opératoires d’électrocoagulation pour le traitement d’un effluent de textile : Exemple du bleu de méthylène

2021 ◽  
Vol 15 (2) ◽  
pp. 790-802
Author(s):  
Yibor Fabrice Roland Bako ◽  
Inoussa Zongo ◽  
Yssouf Karanga ◽  
Issa Tapsoba ◽  
Issoufou Sawadogo ◽  
...  

Les effluents industriels issus des activités textiles présentent une grande charge polluante difficilement biodégradable et qui a des impacts non négligeables sur l’environnement et l’Homme. Leur décontamination par les procédés conventionnels biologiques ou physiques est souvent inefficace et nécessite par conséquent le recours à des procédés d’oxydation avancée dont l’électrocoagulation. Dans le présent travail, nous avons étudié l’élimination par électrocoagulation du bleu de méthylène, modèle de colorant synthétique textile, en utilisant des électrodes de fer et d’aluminium. L’étude des paramètres pouvant influencer l’élimination par électrocoagulation du bleu de méthylène tels que le pH, la durée de l’électrolyse, la densité de courant et la nature de l’anode a montré que les meilleurs traitements sont obtenus avec un effluent de pH égal à 7 pendant 4 heures d’électrolyse à une densité de courant de 3,75 A/cm2 en utilisant l’électrode de fer. Dans ces conditions, le pourcentage d’élimination du bleu de méthylène dans les eaux atteint 80,1%. Des électrodes en fer seraient donc plus intéressantes pour l’élimination du bleu de méthylène, comparativement à des électrodes en aluminium.Mots clés : Electrocoagulation, fer, aluminium, effluents industriels, bleu de méthylène.   English Title: Study of operator parameters in electrocoagulation for the treatment of a synthetic textile effluent: example of methylene blueIndustrial effluents from textile activities have a large polluting load that is difficult to biodegrade and which has significant impacts on the environment and on humans. Their decontamination by conventional biological or physical processes is often ineffective and therefore requires the use of advanced oxidation processes including electrocoagulation. In the present work, we investigated the  electrocoagulation removal of methylene blue, a synthetic textile dye model, using iron and aluminum electrodes. The study of the parameters of EC which can influence the elimination of methylene blue in wastewater, such as the pH, the duration of the electrolysis, the  current density and the nature of the anode showed that the best treatment are obtained with a pH effluent equal to 7, for 4 hours of electrolysis with an iron electrode at a current density of 3.75 A / cm2. Under these conditions, the percentage of elimination of methylene blue in water reaches 80.1%. Iron electrodes would therefore be more advantageous for the removal of methylene blue, compared to aluminum electrodes.Keywords: Electrocoagulation, iron, aluminum, industrial effluents, methylene blue.

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2779
Author(s):  
Ji-Hyun Kim ◽  
Jung Eun Park ◽  
Eun Sil Lee

In this study, an alumina (Al) anode, a lead cathode, and insoluble catalytic cathodes (IrOx, PdOx, TaOx, and SnOx) were used as electrodes to enhance zinc recovery. The traditionally used iron electrode and insoluble catalytic electrodes were also used to compare the recovery yield when different types of electrodes were subjected to the same amount of energy. The lead electrode showed over 5000 Ω higher electrode resistance than did the insoluble catalytic electrode, leading to overpotential requiring higher electrical energy. As electrical energy used by the lead and the insoluble catalytic electrodes were 2498.97 and 2262.37 kwh/ton-Zn, respectively, electrical energy can be reduced by 10% when using an insoluble catalytic electrode compared to that when using a lead electrode. Using recovery time (1–4 h) and current density (100–500 A/m2) as variables, the activation, concentration polarization, and electrode resistance were measured for each condition to find the optimum condition for zinc recovery. A recovery yield of about 77% was obtained for up to 3 h of zinc recovery time at a current density of 200 A/m2, which is lower than that (about 80%) obtained at 300 A/m2. After 3 h of recovery time, electrode resistance (Zn concentration reduction, hydrogen generation on electrode surface) and overpotential increase with time decreased at a current density of 200 A/m2, leading to a significant increase in zinc recovery yield (95%).


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


2021 ◽  
Author(s):  
Minmin Wang ◽  
Mengke Zhang ◽  
Wenwu Song ◽  
Weiting Zhong ◽  
Xunyue Wang ◽  
...  

A CoMo2S4/Ni3S2 heterojunction is prepared with an overpotential of only 51 mV to drive a current density of 10 mA cm−2 in 1 M KOH solution and ∼100% of the potential remains in the ∼50 h chronopotentiometric curve at 10 mA cm−2.


1995 ◽  
Vol 391 ◽  
Author(s):  
S. P. Riege ◽  
A. W. Hunt ◽  
J. A. Prybyla

AbstractDirect real-time observations of electromigration (EM) in submicron Al interconnects were made using a special sample-stage which allowed TEM observations to be recorded while simultaneously heating and passing current through the sample. The samples consisted of 4000 Å thick Al(0.5wt%Cu) patterned over a TEM-transparent window into five runners in parallel, with linewidths 0.2, 0.3, 0.5, 0.8, and 1.0 μm. Both passivated and unpassivated samples were examined. A current density of 2 x 106A/cm2 was used with temperatures ranging from 200 - 350°C. The experiments were done using constant voltage testing, and we used a special sample design which dramatically minimized Joule-heating. Our approach has allowed us to directly observe voids form, grow, migrate, pin, fail a runner, and heal, all with respect to the detailed local microstructure of the runners.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Syed Afaq Ali Shah ◽  
Muhammad Hassan Sayyad ◽  
Jinghua Sun ◽  
Zhongyi Guo

Due to the tremendous increase in power conversion efficiency (PCE) of organic–inorganic perovskite solar cells (PSCs), this technology has attracted much attention. Despite being the fastest-growing photovoltaic technology to date, bottlenecks such as current density–voltage (J–V) hysteresis have significantly limited further development. Current density measurements performed with different sweep scan speeds exhibit hysteresis and the photovoltaic parameters extracted from the current density–voltage measurements for both scan directions become questionable. A current density–voltage measurement protocol needs to be established which can be used to achieve reproducible results and to compare devices made in different laboratories. In this work, we report a hysteresis analysis of a hole-transport-material-free (HTM-free) carbon-counter-electrode-based PSC conducted by current density–voltage and impedance spectra measurements. The effect of sweep scan direction and time delay was examined on the J–V characteristics of the device. The hysteresis was observed to be strongly sweep scan direction and time delay dependent and decreased as the delay increased. The J–V analysis conducted in the reverse sweep scan direction at a lower sweep time delay of 0.2 s revealed very large increases in the short circuit current density and the power conversion efficiency of 57.7% and 56.1%, respectively, compared with the values obtained during the forward scan under the same conditions. Impedance spectroscopy (IS) investigations were carried out and the effects of sweep scan speed, time delay, and frequency were analyzed. The hysteresis was observed to be strongly sweep scan direction, sweep time delay, and frequency dependent. The correlation between J–V and IS data is provided. The wealth of photovoltaic and impendence spectroscopic data reported in this work on the hysteresis study of the HTM-free PSC may help in establishing a current density–voltage measurement protocol, identifying components and interfaces causing the hysteresis, and modeling of PSCs, eventually benefiting device performance and long-term stability.


Author(s):  
Zahia Benredjem ◽  
Karima Barbari ◽  
Imene Chaabna ◽  
Samia Saaidia ◽  
Abdelhak Djemel ◽  
...  

Abstract The Advanced Oxidation Processes (AOPs) are promising environmentally friendly technologies for the treatment of wastewater containing organic pollutants in general and particularly dyes. The aim of this work is to determine which of the AOP processes based on the Fenton reaction is more effective in degrading the methyl orange (MO) dye. The comparative study of the Fenton, photo-Fenton (PF) and electro-Fenton (EF) processes has shown that electro-Fenton is the most efficient method for oxidizing Methyl Orange. The evolution of organic matter degradation was followed by absorbance (discoloration) and COD (mineralization) measurements. The kinetics of the MO degradation by the electro-Fenton process is very rapid and the OM degradation rate reached 90.87% after 5 min. The influence of some parameters such as the concentration of the catalyst (Fe (II)), the concentration of MO, the current density, the nature and the concentration of supporting electrolyte was investigated. The results showed that the degradation rate increases with the increase in the applied current density and the concentration of the supporting electrolyte. The study of the concentration effect on the rate degradation revealed optimal values for the concentrations 2.10−5 M and 75 mg L−1 of Fe (II) and MO respectively.


2021 ◽  
Vol 5 (5) ◽  
pp. 129
Author(s):  
Yapeng Wang ◽  
Yanxiang Wang ◽  
Chengjuan Wang ◽  
Yongbo Wang

As one of the most outstanding high-efficiency and environmentally friendly energy storage devices, the supercapacitor has received extensive attention across the world. As a member of transition metal oxides widely used in electrode materials, manganese dioxide (MnO2) has a huge development potential due to its excellent theoretical capacitance value and large electrochemical window. In this paper, MnO2 was prepared at different temperatures by a liquid phase precipitation method, and polyaniline/manganese dioxide (PANI/MnO2) composite materials were further prepared in a MnO2 suspension. MnO2 and PANI/MnO2 synthesized at a temperature of 40 °C exhibit the best electrochemical performance. The specific capacitance of the sample MnO2-40 is 254.9 F/g at a scanning speed of 5 mV/s and the specific capacitance is 241.6 F/g at a current density of 1 A/g. The specific capacitance value of the sample PANI/MnO2-40 is 323.7 F/g at a scanning speed of 5 mV/s, and the specific capacitance is 291.7 F/g at a current density of 1 A/g, and both of them are higher than the specific capacitance value of MnO2. This is because the δ-MnO2 synthesized at 40 °C has a layered structure, which has a large specific surface area and can accommodate enough electrolyte ions to participate the electrochemical reaction, thus providing sufficient specific capacitance.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 384
Author(s):  
Ahmed Labena ◽  
Ahmed E. Abdelhamid ◽  
Abeer S. Amin ◽  
Shimaa Husien ◽  
Liqaa Hamid ◽  
...  

Biosorption is a bioremediation approach for the removal of harmful dyes from industrial effluents using biological materials. This study investigated Methylene blue (M. blue) and Congo red (C. red) biosorption from model aqueous solutions by two marine macro-algae, Ulva fasciata and Sargassum dentifolium, incorporated within acrylic fiber waste to form composite membranes, Acrylic fiber-U. fasciata (AF-U) and Acrylic fiber-S. dentifolium (AF-S), respectively. The adsorption process was designed to more easily achieve the 3R process, i.e., removal, recovery, and reuse. The process of optimization was implemented through one factor at a time (OFAT) experiments, followed by a factorial design experiment to achieve the highest dye removal efficiency. Furthermore, isotherm and kinetics studies were undertaken to determine the reaction nature. FT-IR and SEM analyses were performed to investigate the properties of the membrane. The AF-U membrane showed a significant dye removal efficiency, of 88.9% for 100 ppm M. blue conc. and 79.6% for 50 ppm C. red conc. after 240 min sorption time. AF-S recorded a sorption capacity of 82.1% for 100 ppm M. blue conc. after 30 min sorption time and 85% for 100 ppm C. red conc. after 240 min contact time. The membranes were successfully applied in the 3Rs process, in which it was found that the membranes could be used for five cycles of the removal process with stable efficiency.


Sign in / Sign up

Export Citation Format

Share Document