scholarly journals Impact of climate change on domestic water accessibility in Bamenda III Sub-Division, North West region, Cameroon

2022 ◽  
Vol 17 (2) ◽  
pp. 131-145
Author(s):  
Suiven John Paul Tume

The effects of climate change are felt most at the household level, when taps and springs run dry for several weeks or months, forcing people to access potable water from doubtful sources. There has been an increase in the population of Bamenda III without a proportionate increase in the water supply capacity. This has resulted in severe water crises, even though Bamenda III municipality has water supplies from the Council, Community, CAMWATER, natural springs and streams, wells and boreholes. Household data on water accessibility against a backdrop of a changing climate was collected using 269 questionnaires to assess perceptions on the state of water resources and climate. Rainfall data were collected from 1963-2019 and results revealed that mean annual rainfall is at 182.52 mm, with a standard deviation of 29.16 and a Coefficient of Variation of 15.69%, while the mean Standardized Precipitation Index is -0.07 (mild dryness), and rainfall has reduced by -2.07 mm from 1963-2019. The population attributed problems of water accessibility to climate change, urbanization and poor water governance. It is recommended that sustainable water management through Nature-based Solutions and Ecosystem-based Adaptation should be implemented from the watershed to the community level.

Author(s):  
Keneilwe Ruth Kgosikoma ◽  
Phatsimo Cotildah Lekota ◽  
Olaotswe Ernest Kgosikoma

Purpose The purpose of this study is to analyze smallholder farmers’ perceptions on climate change and its stressors, their adaptation strategies and factors that influence their adaptation to climate change. Design/methodology/approach The study was conducted in Kweneng district, located in the south eastern part of Botswana. Multi-stage sampling was used to obtain a representative sample from three sub-districts in the district. A structured questionnaire was used to collect data by using face-to-face interviews. Findings Majority of farmers perceived an increase in mean annual temperature and the number of hot days and a decrease in mean annual rainfall and the number of rainfall days over the past 10 years as indicators of climate change. The prominent adaptation strategies included changes in planting dates for crops and supplementary feeding for livestock. The logistic regression results show that gender, age, household size, poverty, shortage of land, mixed farming and knowledge about climate change significantly influence adaptation. Practical implications The findings indicate that climate change policy should target agricultural diversification at the household level and dissemination of information on climate change and adaptation strategies. Originality/value Policy recommendations can be suggested: government climate change interventions should target agricultural diversification at the household level, and this study provides insights on what influences adaptation strategies and what should be targeted to build resilience in the agricultural sector.


2019 ◽  
Vol 19 (3) ◽  
pp. 125-135 ◽  
Author(s):  
Khadija Diani ◽  
Ilias Kacimi ◽  
Mahmoud Zemzami ◽  
Hassan Tabyaoui ◽  
Ali Torabi Haghighi

Abstract One of the adverse impacts of climate change is drought, and the complex nature of droughts makes them one of the most important climate hazards. Drought indices are generally used as a tool for monitoring changes in meteorological, hydrological, agricultural and economic conditions. In this study, we focused on meteorological drought events in the High Ziz river Basin, central High Atlas, Morocco. The application of drought index analysis is useful for drought assessment and to consider methods of adaptation and mitigation to deal with climate change. In order to analyze drought in the study area, we used two different approaches for addressing the change in climate and particularly in precipitation, i) to assess the climate variability and change over the year, and ii) to assess the change within the year timescale (monthly, seasonally and annually) from 1971 to 2017. In first approach, precipitation data were used in a long time scale e.g. annual and more than one-year period. For this purpose, the Standardized Precipitation Index (SPI) was considered to quantify the rainfall deficit for multiple timescales. For the second approach, trend analysis (using the Mann-Kendall (M-K) test) was applied to precipitation in different time scales within the year. The results showed that the study area has no significant trend in annual rainfall, but in terms of seasonal rainfall, the magnitude of rainfall during summer revealed a positive significant trend in three stations. A significant negative and positive trend in monthly rainfall was observed only in April and August, respectively.


Bhadar is one of the major rivers of Kathaiwar (Saurashtra) peninsula in Gujarat, India. It originates near Vaddi (Aniali Village) about 26 km north – west of Jasdan in Rajkot district of the state of Gujarat, India at an elevation of 261 m above mean sea level. Impact assessment of climate change over Bhadar river basin is carried out using two statistical methods of Trend Analysis i.e. linear Regression, and Innovative Trend method. Effect of climate change on annual rainfall and monthly rainfall are studied. Results show that there is an overall increase in annual rainfall trend in Bhadar river basin/catchment area at all stations except one station. The results for monthly rainfall show that the rainfall in the month of July and September shows increasing trend at all stations. The results obtained using Linear Regression and Innovative Trend method are found to be consistent.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1819
Author(s):  
Eleni S. Bekri ◽  
Polychronis Economou ◽  
Panayotis C. Yannopoulos ◽  
Alexander C. Demetracopoulos

Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus, in water resources management plans, storage reservoirs play a vital role in safeguarding drinking, irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects, such as fragmentation of water flow and sediment transport, are considered in decision-making, for achieving an optimal balance between human needs and healthy riverine and coastal ecosystems. Currently, operation of existing reservoirs is challenged by increasing water demand, climate change effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity. This paper proposes a methodological framework to reassess supply capacity and management resilience for an existing reservoir under these challenges. Future projections are derived by plausible climate scenarios and global climate models and by stochastic simulation of historic data. An alternative basic reservoir management scenario with a very low exceedance probability is derived. Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable total benefit from water allocated to the various water uses is estimated to assist decision makers in examining the tradeoffs between the probable additional benefit and risk of exceedance.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Otman EL Mountassir ◽  
Mohammed Bahir ◽  
Driss Ouazar ◽  
Abdelghani Chehbouni ◽  
Paula M. Carreira

AbstractThe city of Essaouira is located along the north-west coast of Morocco, where groundwater is the main source of drinking, domestic and agricultural water. In recent decades, the salinity of groundwater has increased, which is why geochemical techniques and environmental isotopes have been used to determine the main sources of groundwater recharge and salinization. The hydrochemical study shows that for the years 1995, 2007, 2016 and 2019, the chemical composition of groundwater in the study area consists of HCO3–Ca–Mg, Cl–Ca–Mg, SO4–Ca and Cl–Na chemical facies. The results show that from 1995 to 2019, electrical conductivity increased and that could be explained by a decrease in annual rainfall in relation to climate change and water–rock interaction processes. Geochemical and environmental isotope data show that the main geochemical mechanisms controlling the hydrochemical evolution of groundwater in the Cenomanian–Turonian aquifer are the water–rock interaction and the cation exchange process. The diagram of δ2H = 8 * δ18O + 10 shows that the isotopic contents are close or above to the Global Meteoric Water Line, which suggests that the aquifer is recharged by precipitation of Atlantic origin. In conclusion, groundwater withdrawal should be well controlled to prevent groundwater salinization and further intrusion of seawater due to the lack of annual groundwater recharge in the Essaouira region.


2021 ◽  
Vol 13 (3) ◽  
pp. 1414
Author(s):  
Mónica Madonado-Devis ◽  
Vicent Almenar-Llongo

In urban water provisioning, prices can improve efficiency, contributing to the achievement of the environmental objective. However, household responses to price changes differ widely based on the household characteristics. Analyses performed at the aggregate level ignore the implications of water demand incentives at the individual household level. A large data sample at the household level enables estimation of econometric models of water demand, capturing the heterogeneity in domestic consumption. This study estimated the domestic water demand in the city of Valencia and its elasticity, along with the demands of its different districts and neighbourhoods (intra-urban scale analysis). Water price structure in Valencia is completely different from that of other Spanish cities: it is a price structure of increasing volume (increasing rate tariffs, IRT). For this estimation, from a microdata panel at the household level, the demand function with average prices for the period 2008–2011 was estimated using panel data techniques including a fixed effect for each neighbourhood. The domestic water demand elasticity at the average price in Valencia was estimated at −0.88 (which is higher than that estimated for other Spanish cities). This value indicates an inelastic demand at the average price of the previous period, which can cause consumers to overestimate the price and react more strongly to changes.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2010 ◽  
Vol 11 (1) ◽  
pp. 26-45 ◽  
Author(s):  
Nityanand Singh ◽  
Ashwini Ranade

Abstract Characteristics of wet spells (WSs) and intervening dry spells (DSs) are extremely useful for water-related sectors. The information takes on greater significance in the wake of global climate change and climate-change scenario projections. The features of 40 parameters of the rainfall time distribution as well as their extremes have been studied for two wet and dry spells for 19 subregions across India using gridded daily rainfall available on 1° latitude × 1° longitude spatial resolution for the period 1951–2007. In a low-frequency-mode, intra-annual rainfall variation, WS (DS) is identified as a “continuous period with daily rainfall equal to or greater than (less than) daily mean rainfall (DMR) of climatological monsoon period over the area of interest.” The DMR shows significant spatial variation from 2.6 mm day−1 over the extreme southeast peninsula (ESEP) to 20.2 mm day−1 over the southern-central west coast (SCWC). Climatologically, the number of WSs (DSs) decreases from 11 (10) over the extreme south peninsula to 4 (3) over northwestern India as a result of a decrease in tropical and oceanic influences. The total duration of WSs (DSs) decreases from 101 (173) to 45 (29) days, and the duration of individual WS (DS) from 12 (18) to 7 (11) days following similar spatial patterns. Broadly, the total rainfall of wet and dry spells, and rainfall amount and rainfall intensity of actual and extreme wet and dry spells, are high over orographic regions and low over the peninsula, Indo-Gangetic plains, and northwest dry province. The rainfall due to WSs (DSs) contributes ∼68% (∼17%) to the respective annual total. The start of the first wet spell is earlier (19 March) over ESEP and later (22 June) over northwestern India, and the end of the last wet spell occurs in reverse, that is, earlier (12 September) from northwestern India and later (16 December) from ESEP. In recent years/decades, actual and extreme WSs are slightly shorter and their rainfall intensity higher over a majority of the subregions, whereas actual and extreme DSs are slightly (not significantly) longer and their rainfall intensity weaker. There is a tendency for the first WS to start approximately six days earlier across the country and the last WS to end approximately two days earlier, giving rise to longer duration of rainfall activities by approximately four days. However, a spatially coherent, robust, long-term trend (1951–2007) is not seen in any of the 40 WS/DS parameters examined in the present study.


Desalination ◽  
2009 ◽  
Vol 248 (1-3) ◽  
pp. 530-536 ◽  
Author(s):  
A. Kohli ◽  
S.J. Komisar ◽  
C.E. Montenegro

Sign in / Sign up

Export Citation Format

Share Document