scholarly journals Tiazofurin inhibits oral cancer growth in vitro and in vivo via upregulation of miR-204 expression

2020 ◽  
Vol 19 (7) ◽  
pp. 1377-1382
Author(s):  
Xiaoying Tang ◽  
Aimin Zhao ◽  
Yanhuan Hong

Purpose: To investigate the effect of tiazofurin on proliferation and growth of oral cancer cells, and the associated mechanism(s) of action.Methods: The effect of tiazofurin on the cytotoxicity of SCC-VII and SCC-25 oral cancer cells were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while cell apoptosis was determined by flow cytometry. Western blotting was used for assaying proteinexpressions.Results: Tiazofurin inhibited the viability of the oral cancer cells in a concentration-based manner (p < 0.05). Tiazofurin treatment at a dose of 2.0 μM reduced the proliferation of SCC-VII and SCC-25 cells to 25 and 22 %, respectively. Apoptosis was significantly increased in SCC-VII and SCC-25 cells by tiazofurin treatment, relative to untreated cells (p < 0 .05). Tiazofurin also increased the activation levels of caspase-3 and caspase-9 and downregulated the expressions of p-Akt and p-mTOR in the two cancer cell lines. Moreover, miR-204 expression was significantly promoted in the tiazofurin-treated cells, when compared to control (p < 0 .05). In SCC-VII cells, treatment with tiazofurin suppressed Factin expression, relative to control.Conclusion: These results demonstrate that tiazofurin inhibits the viability and proliferation of SCC-VII and SCC-25 cancer cells via induction of apoptosis and activation of caspase-3/caspase-9. Moreover, tiazofurin targets Akt/mTOR pathway, and upregulats the expressions of F-actin and miR-204 in the oral carcinoma cells. These findings suggest that tiazofurin has a potential for use as an effective treatment for oral cancer. Keywords: Oral cancer, Tiazofurin, Apoptosis, Caspase, Cytotoxicity

Cancer ◽  
2000 ◽  
Vol 89 (9) ◽  
pp. 1966-1975 ◽  
Author(s):  
Masato Okamoto ◽  
Kenji Hiura ◽  
Go Ohe ◽  
Yasuo Ohba ◽  
Kunihoro Terai ◽  
...  

2020 ◽  
Vol 247 ◽  
pp. 112256 ◽  
Author(s):  
Chunwei Jiao ◽  
Wang Chen ◽  
Xupeng Tan ◽  
Huijia Liang ◽  
Jieyi Li ◽  
...  

2018 ◽  
Vol 9 (7) ◽  
pp. 3640-3656 ◽  
Author(s):  
Aroonwan Lam-ubol ◽  
Alison Lea Fitzgerald ◽  
Arnat Ritdej ◽  
Tawaree Phonyiam ◽  
Hui Zhang ◽  
...  

Sensory acceptable doses of PEITC are selectively toxic to oral cancer cells via ROS-mediated cell cycle arrest.


2018 ◽  
Vol 10 ◽  
pp. 175883591879462 ◽  
Author(s):  
Ji-Min Li ◽  
Chien-Wei Tseng ◽  
Chi-Chen Lin ◽  
Ching-Hsuan Law ◽  
Yu-An Chien ◽  
...  

Background: Oral cancer metastasis is a devastating process that contributes to poor prognosis and high mortality, yet its detailed underlying mechanisms remain unclear. Here, we aimed to evaluate metastasis-specific markers in oral cancer and to provide comprehensive recognition concerning functional roles of the specific target in oral cancer metastasis. Methods: Lectin, galactoside-binding, soluble, 1 (LGALS1) was identified by secretomic analysis. LGALS1 expression of patient samples with oral cancer on the tissue microarray were examined by immunochemical (IHC) staining. Small interfering RNA (siRNA)-mediated knockdown of LGALS1 revealed the role of LGALS1 in oral cancer metastasis in vitro and in vivo. Results: LGALS1 was observed to be upregulated in highly invasive oral cancer cells, and elevated LGALS1 expression was correlated with cancer progression and lymph node metastasis in oral cancer tissue specimens. Functionally, silencing LGALS1 resulted in suppressed cell growth, wound healing, cell migration, and cell invasion in oral cancer cells in vitro. Knockdown of LGALS1 in highly invasive oral cancer cells dramatically inhibited lung metastasis in an in vivo mouse model. Mechanistic studies suggested p38 mitogen-activated protein kinase (MAPK) phosphorylation, upregulated MMP-9, and mesenchymal phenotypes of epithelial-mesenchymal transition (EMT) in highly invasive oral cancer cells, whereas siRNA against LGALS1 resulted in the inactivation of p38 MAPK pathway, downregulated MMP-9, and EMT inhibition. Conclusions: These findings demonstrate that elevated LGALS1 is strongly correlated with oral cancer progression and metastasis, and that it could potentially serve as a prognostic biomarker and an innovative target for oral cancer therapy.


2016 ◽  
Vol 49 (5) ◽  
pp. 2011-2022 ◽  
Author(s):  
Xiaoli Ji ◽  
Zhihui Zhang ◽  
Ying Han ◽  
Jiangyuan Song ◽  
Xiangliang Xu ◽  
...  

2019 ◽  
Vol 34 (8) ◽  
pp. 958-967 ◽  
Author(s):  
Jen‐Yang Tang ◽  
Yi‐Hua Xu ◽  
Li‐Ching Lin ◽  
Fu Ou‐Yang ◽  
Kuang‐Han Wu ◽  
...  

Author(s):  
Domenico Mattoscio ◽  
Elisa Isopi ◽  
Alessia Lamolinara ◽  
Sara Patruno ◽  
Alessandro Medda ◽  
...  

Abstract Background Innovative therapies to target tumor-associated neutrophils (PMN) are of clinical interest, since these cells are centrally involved in cancer inflammation and tumor progression. Resolvin D1 (RvD1) is a lipid autacoid that promotes resolution of inflammation by regulating the activity of distinct immune and non-immune cells. Here, using human papilloma virus (HPV) tumorigenesis as a model, we investigated whether RvD1 modulates PMN to reduce tumor progression. Methods Growth-curve assays with multiple cell lines and in vivo grafting of two distinct HPV-positive cells in syngeneic mice were used to determine if RvD1 reduced cancer growth. To investigate if and how RvD1 modulates PMN activities, RNA sequencing and multiplex cytokine ELISA of human PMN in co-culture with HPV-positive cells, coupled with pharmacological depletion of PMN in vivo, were performed. The mouse intratumoral immune cell composition was evaluated through FACS analysis. Growth-curve assays and in vivo pharmacological depletion were used to evaluate anti-tumor activities of human and mouse monocytes, respectively. Bioinformatic analysis of The Cancer Genome Atlas (TCGA) database was exploited to validate experimental findings in patients. Results RvD1 decreased in vitro and in vivo proliferation of human and mouse HPV-positive cancer cells through stimulation of PMN anti-tumor activities. In addition, RvD1 stimulated a PMN-dependent recruitment of classical monocytes as key determinant to reduce tumor growth in vivo. In human in vitro systems, exposure of PMN to RvD1 increased the production of the monocyte chemoattractant protein-1 (MCP-1), and enhanced transmigration of classical monocytes, with potent anti-tumor actions, toward HPV-positive cancer cells. Consistently, mining of immune cells infiltration levels in cervical cancer patients from the TCGA database evidenced an enhanced immune reaction and better clinical outcomes in patients with higher intratumoral monocytes as compared to patients with higher PMN infiltration. Conclusions RvD1 reduces cancer growth by activating PMN anti-cancer activities and encouraging a protective PMN-dependent recruitment of anti-tumor monocytes. These findings demonstrate efficacy of RvD1 as an innovative therapeutic able to stimulate PMN reprogramming to an anti-cancer phenotype that restrains tumor growth.


2021 ◽  
Vol 22 (14) ◽  
pp. 7509
Author(s):  
Hai Huang ◽  
Jun-Koo Yi ◽  
Su-Geun Lim ◽  
Sijun Park ◽  
Haibo Zhang ◽  
...  

Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.


2020 ◽  
Author(s):  
Guiqing Zhou ◽  
Jianhui Liu ◽  
Xiangyang Li ◽  
Yujian Sang ◽  
Yue Zhang ◽  
...  

Abstract Background: Silica nanoparticles (SiNPs) are found in environmental particulate matter and are proven to have adverse effects on fertility. The relationship and underlying mechanisms between miRNAs and apoptosis induced by SiNPs during spermatogenesis is currently ambiguous. Experimental design: The present study was designed to investigate the role of miRNA-450b-3p in the reproductive toxicity caused by SiNPs. In vivo, 40 male mice were randomly divided into control and SiNPs groups, 20 per group. The mice in the SiNPs group were administrated 20 mg/kg SiNPs by tracheal perfusion once every 5 days, for 35 days, and the control group were given the equivalent of a normal luminal saline. In vitro, spermatocyte cells were divided into 0 and 5 μg/mL SiNPs groups, after passaged for 30 generations, the GC-2spd cells in 5 μg/mL SiNPs groups were transfected with miRNA-450b-3p and its mimic and inhibitor. Results: In vivo, the results showed that SiNPs damaged tissue structures of testis, decreased the quantity and quality of the sperm, reduced the expression of miR-450b-3p, and increased the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, and Caspase-3 in the testis. In vitro, SiNPs obviously repressed the viability and increased the LDH level and apoptosis rate, decreased the levels of the miR-450b-3p, significantly enhanced the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, Caspase-3; while the mimic of miR-450b-3p reversed the changes induced by SiNPs, but inhibitor further promoted the effects induced by SiNPs.Conclusion: The result suggested that SiNPs could induce the spermatocyte apoptosis by inhibiting the miR-450b-3p expression to target promoting the MTCH2 resulting in activating mitochondrial apoptotic signaling pathways in the spermatocyte cells.


Sign in / Sign up

Export Citation Format

Share Document