SOURCES OF SALMONELLAE CONTAMINATION OF MEAT FOLLOWING APPROVED LIVESTOCK SLAUGHTERING PROCEDURES. II

1973 ◽  
Vol 36 (12) ◽  
pp. 635-638 ◽  
Author(s):  
A. B. Childers ◽  
E. E. Keahey ◽  
P. G. Vincent

Samples were taken from 218 animals of 3 species slaughtered at 3 plants to determine the spread of bacterial contamination during slaughter. Salmonellae and Escherichia coli were cultured from swabs taken of the equipment during slaughter, from various carcass sites, and from fecal samples. The study indicated that some equipment contamination occurred during slaughter and that carcass washing did not remove contaminants but simply washed them lower on the carcass. Rumen/cecum samples were most effective for isolation of salmonellae from the gastrointestinal tract. The average level of salmonellae contamination of the carcass for all species was 10% and of the processed product, 2%. There were no salmonellae isolated from cattle carcasses. Isolation of the bung (rectum) with a plastic bag did not reduce contamination but sterilization of the bung dropper's knife between carcasses reduced the incidence by an average of greater than 50%. Salmonellae were isolated from boneless mutton but not from raw or cooked pork and beef products. Isolations from the hide were closely related with carcass contamination. Enrichment and non-enrichment media isolations of salmonellae were closely related.

2007 ◽  
Vol 70 (10) ◽  
pp. 2230-2234 ◽  
Author(s):  
T. W. THOMPSON ◽  
T. P. STEPHENS ◽  
G. H. LONERAGAN ◽  
M. F. MILLER ◽  
M. M. BRASHEARS

Rapid enzyme-linked immunosorbent assays (ELISAs) are approved for detection of Escherichia coli O157 in beef products. However, these kits have also been used in the industry to detect this pathogen on hides or in feces of cattle, although this use has not been validated. The objective of this study was to compare commercially available ELISAs (E. coli Now, Reveal, and VIP) with immunomagnetic separation along with selective media to detect E. coli O157 on hides, in feces, and in medium- and low-level-inoculated ground beef and carcasses (simulated by using briskets) samples. Naturally infected hide and fecal samples were subjected to both the immunomagnetic separation method and ELISAs for the detection of E. coli O157. Additionally, E. coli O157 inoculated and noninoculated ground beef and beef briskets were used to simulate meat and carcass samples. When comparing the detection results from the ELISAs (E. coli Now, Reveal, and VIP) to the immunomagnetic separation method, poor agreement was observed for fecal samples (kappa = 0.10, 0.02, and 0.03 for E. coli Now, Reveal, and VIP, respectively), and fair-to-moderate agreement was observed for hide samples (kappa = 0.30, 0.51, and 0.29 for E. coli Now, Reveal, and VIP, respectively). However, there was near-perfect agreement between the immunomagnetic separation method and ELISAs for ground beef (kappa = 1, 1, and 0.80 for E. coli Now, Reveal, and VIP, respectively) and brisket (kappa = 1, 1, and 1 for E. coli Now, Reveal, and VIP, respectively) samples. Assuming immunomagnetic separation is the best available method, these data suggest that the ELISAs are not useful in detecting E. coli O157 from hide or fecal samples. However, when ELISAs are used on ground beef and beef brisket samples they can be used with a high degree of confidence.


2005 ◽  
Vol 68 (3) ◽  
pp. 451-457 ◽  
Author(s):  
NARELLE FEGAN ◽  
GLEN HIGGS ◽  
PAUL VANDERLINDE ◽  
PATRICIA DESMARCHELIER

The extent of contamination with Escherichia coli O157 was determined for 100 cattle during slaughter. Samples from 25 consecutively slaughtered cattle from four unrelated groups were collected from the oral cavity, hide, rumen, feces after evisceration, and pre- and postchill carcass. Ten random fecal samples were collected from the pen where each group of animals was held at the abattoir. E. coli O157 was detected using automated immunomagnetic separation (AIMS), and cell counts were determined using a combination of most probable number (MPN) and AIMS. E. coli O157 was isolated from 87 (14%) of the 606 samples collected, including 24% of 99 oral cavity samples, 44% of 100 hides, 10% of 68 fecal samples collected postevisceration, 6% of 100 prechill carcass swabs, and 15% of 40 fecal samples collected from holding pens. E. coli O157 was not isolated from rumen or postchill carcass samples. E. coli O157 was isolated from at least one sample from each group of cattle tested, and the prevalence in different groups ranged from less than 1 to 41%. The numbers of E. coli O157 differed among the animals groups. The group which contained the highest fecal (7.5 × 105 MPN/g) and hide (22 MPN/cm2) counts in any individual animal was the only group in which E. coli O157 was isolated from carcasses, suggesting a link between the numbers of E. coli O157 present and the risk of carcass contamination. Processing practices at this abattoir were adequate for minimizing contamination of carcasses, even when animals were heavily contaminated with E. coli O157.


2009 ◽  
Vol 72 (8) ◽  
pp. 1709-1712 ◽  
Author(s):  
SOFIA BOQVIST ◽  
ANNA ASPAN ◽  
ERIK ERIKSSON

A national verotoxigenic Escherichia coli (VTEC) O157:H7 monitoring study was carried out among cattle at slaughter in Sweden during 2005 and 2006. Sixty (3.4%; 95% confidence interval, 3.3 to 3.5%) of 1,758 fecal samples collected and 54 (12%; 95% confidence interval, 11.9 to 12.4 %) of 446 ear samples tested positive for VTEC O157:H7. Ear samples were included to evaluate whether they could be used to assess general VTEC O157:H7 contamination at slaughter. The respective prevalences of positive fecal and ear samples were 16 and 21% for older calves, 3.5 and 10% for young stock, and 1.6 and 12% for adult cattle. There were significant differences between the age groups for the fecal samples, but not for the ear samples. It could be that ear samples are less subject to age variations due to environmental factors, or perhaps this observation was due to fewer ear samples being collected in this study. Within the age groups, the prevalence of VTEC O157:H7–positive ear samples was significantly higher than that of fecal samples for young stock and adult cattle. Furthermore, the prevalence of positive ear samples fluctuated more widely throughout the year than that of positive fecal samples. The fecal prevalence data can be used as baseline data against which future intervention strategies can be evaluated, and the ear samples can be used as an indicator of environmental contamination. The results of the ear samples are too limited to determine if they can be used to detect hide contamination and risk of carcass contamination.


2008 ◽  
Vol 71 (9) ◽  
pp. 1761-1767 ◽  
Author(s):  
J. T. FOX ◽  
D. G. RENTER ◽  
M. W. SANDERSON ◽  
A. L. NUTSCH ◽  
X. SHI ◽  
...  

To quantify associations at slaughter between Escherichia coli O157 carcass contamination, fecal-positive animals, and high-shedding animals within truckloads of finished cattle, we sampled up to 32 cattle from each of 50 truckloads arriving at a commercial abattoir in the Midwest United States during a 5-week summer period. Carcass swab samples collected preevisceration and fecal samples collected postevisceration were matched within animals and analyzed for the presence of E. coli O157, using enrichment, immunomagnetic separation, and plating on selective media (IMS). In addition, a direct plating procedure was performed on feces to identify high-shedding animals. E. coli O157 was isolated from 39 (2.6%) of 1,503 carcass samples in 15 (30%) truckloads, and 127 (8.5%) of 1,495 fecal samples in 37 (74%) truckloads. Fifty-five (3.7%) high-shedding animals were detected from 26 (52%) truckloads. Truckload high-shedder (Spearman rank-order correlation coefficient [rs] = 0.68), IMS-positive (rs = 0.48), and combined fecal (rs =0.61) prevalence were significantly correlated with carcass prevalence. The probability of isolating E. coli O157 from a carcass was not significantly associated with the high-shedder or fecal IMS status of the animal from which the carcass was derived. However, the probability of carcass contamination was significantly associated with all truckload-level measures of fecal E. coli O157, particularly whether or not a high shedder was present within the truckload (odds ratio = 16.2; 95% confidence interval, 6.3–43.6). Our results suggest that high shedders within a truckload at slaughter could be a target for mitigation strategies to reduce the probability of preevisceration carcass contamination.


2002 ◽  
Vol 68 (5) ◽  
pp. 2269-2277 ◽  
Author(s):  
Luke J. Grauke ◽  
Indira T. Kudva ◽  
Jang Won Yoon ◽  
Carl W. Hunt ◽  
Christopher J. Williams ◽  
...  

ABSTRACT Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.


2016 ◽  
Vol 79 (11) ◽  
pp. 1868-1874 ◽  
Author(s):  
GLEN E. MELLOR ◽  
NARELLE FEGAN ◽  
LESLEY L. DUFFY ◽  
KATE E. McMILLAN ◽  
DAVID JORDAN ◽  
...  

ABSTRACT Escherichia coli O157 and six non-O157 Shiga toxin–producing E. coli (STEC) serotypes (O26, O45, O103, O111, O121, and O145, colloquially referred to as the “big 6”) have been classified as adulterants of raw nonintact beef products in the United States. While beef cattle are a known reservoir for the prototype STEC serotype, E. coli O157, less is known about the dissemination of non-O157 STEC serotypes in Australian cattle. In the present study, 1,500 fecal samples were collected at slaughter from adult (n =628) and young (n =286) beef cattle, adult (n =128) and young (n =143) dairy cattle, and veal calves (n = 315) across 31 Australian export-registered processing establishments. Fecal samples were enriched and tested for E. coli O157 and the big 6 STEC serotypes using BAX System PCR and immunomagnetic separation methods. Pathogenic STEC (pSTEC; isolates that possess stx, eae, and an O antigen marker for O157 or a big 6 serotype) were isolated from 115 samples (7.7%), of which 100 (6.7%) contained E. coli O157 and 19 (1.3%) contained a big 6 serotype. Four of the 115 samples contained multiple pSTEC serotypes. Among samples confirmed for big 6 pSTEC, 15 (1%) contained E. coli O26 and 4 (0.3%) contained E. coli O111. pSTEC of serotypes O45, O103, O121, and O145 were not isolated from any sample, even though genes indicative of E. coli belonging to these serotypes were detected by PCR. Analysis of animal classes revealed a higher pSTEC prevalence in younger animals, including veal (12.7%), young beef (9.8%), and young dairy (7.0%), than in adult animals, including adult beef (5.1%) and adult dairy (3.9%). This study is the largest of its kind undertaken in Australia. In contrast to E. coli O157 and consistent with previous findings, this study reports a relatively low prevalence of big 6 pSTEC serotypes in Australian cattle populations.


2004 ◽  
Vol 67 (4) ◽  
pp. 679-684 ◽  
Author(s):  
H. AL-SAIGH ◽  
C. ZWEIFEL ◽  
J. BLANCO ◽  
J. E. BLANCO ◽  
M. BLANCO ◽  
...  

Fecal samples from 2,930 slaughtered healthy cattle were examined with the following goals: (i) to monitor the shedding of Escherichia coli O157, Salmonella, and Campylobacter in cattle; and (ii) to further characterize the isolated strains. The percentage of the 2,930 samples that tested positive for E. coli O157 by PCR was 1.6%. Thirty-eight strains from different animals that agglutinated with Wellcolex E. coli O157 were isolated. Of the six sorbitol-negative strains, five tested positive for stx2 genes (two times for stx2c and three times for stx2), and one strain tested positive for stx1 and stx2c genes. All sorbitol-negative strains belonged to the serotypes O157:H− and O157:H7 and harbored the eae type γ1 and ehxA genes. The 32 sorbitol-positive strains tested negative for stx genes and belonged to the serotypes O157:H2, O157:H7, O157:H8, O157: H12, O157:H19, O157:H25, O157:H27, O157:H38, O157:H43, O157:H45, and O157:H−. All O157:H45 strains harbored the eae subtype α1 and therefore seem to be atypical enteropathogenic E. coli strains. Whereas none of 1,000 examined samples was positive for Salmonella, 95 of 935 (10.2%) samples were positive for Campylobacter, and all strains were identified as C. jejuni. Sixteen Campylobacter strains were resistant to tetracycline, five were resistant to nalidixic acid/ciprofloxacin, four were resistant to streptomycin, and one was resistant to nalidixic acid/ciprofloxacin and streptomycin. Fecal shedding of zoonotic pathogens in slaughter animals is strongly correlated with the hazard of carcass contamination. Therefore, the maintenance of slaughter hygiene is of crucial importance.


2009 ◽  
Vol 72 (8) ◽  
pp. 1713-1717 ◽  
Author(s):  
TOM S. EDRINGTON ◽  
MELISSA LONG ◽  
TIM T. ROSS ◽  
JACK D. THOMAS ◽  
TODD R. CALLAWAY ◽  
...  

The present study examined the incidence of Escherichia coli O157:H7 and Salmonella in feedlot lambs. Fifty-six feedlot lambs from eight sheep farming operations were grouped in a single drylot pen, fed, and managed as is typical in the southwestern United States. Fecal samples were collected on days 0, 46, 87, and 122 of the feeding period via rectal palpation. Wool samples (ventral midline) were collected one time only at the feedlot, immediately prior to shipping to the processing plant, and carcass swabs were collected following slaughter. All samples were cultured for E. coli O157:H7, Salmonella, and fecal coliforms, and select isolates were examined for antimicrobial susceptibility. Overall, the percentages of fecal and wool samples positive for E. coli O157:H7 averaged 9 and 18%, respectively. One carcass swab was E. coli O157:H7 positive. Of the 155 fecal samples collected, 11 (7%) were Salmonella positive. Salmonella was detected in nearly 50% of the wool samples collected prior to slaughter, while none of the carcasses were Salmonella positive 24 h postslaughter. All isolates (E. coli O157:H7, Salmonella, and fecal coliforms) were susceptible to ceftiofur, enrofloxacin, and trimethoprim-sulfamethoxazole. One E. coli O157:H7 isolate cultured from a carcass swab was resistant to seven antibiotics, and seven wool E. coli O157: H7 isolates were multidrug resistant. Results of this research demonstrate that feedlot sheep are naturally colonized with E. coli O157:H7 and Salmonella and wool can be a source of carcass contamination; however, in-plant processing procedures and intervention strategies were largely effective in preventing carcass contamination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


2008 ◽  
Vol 75 (3) ◽  
pp. 862-865 ◽  
Author(s):  
Jeremy J. Gilbreath ◽  
Malcolm S. Shields ◽  
Rebekah L. Smith ◽  
Larry D. Farrell ◽  
Peter P. Sheridan ◽  
...  

ABSTRACT Cattle are a known reservoir of Shiga toxin-producing Escherichia coli. The prevalence and stability of Shiga toxin and/or Shiga toxin genes among native wild ungulates in Idaho were investigated. The frequency of both Shiga genes and toxin was similar to that reported for Idaho cattle (∼19%).


Sign in / Sign up

Export Citation Format

Share Document