Occurrence and Characterization of Aeromonas Species in Pasteurized Milk and White Cheese in Rio De Janeiro, Brazil

1993 ◽  
Vol 56 (1) ◽  
pp. 62-65 ◽  
Author(s):  
ANGELA CÔRREA FREITAS ◽  
MARLY PAIVA NUNES ◽  
ARLETE MOREIRA MILHOMEM ◽  
ILVAN DELGADO RICCIARDI

A total of 35 samples (1000 ml each) of pasteurized milk and 25 samples (100 g each) of white cheese purchased at supermarkets in Rio de Janeiro were analyzed for the presence of Aeromonas. Strains of Aeromonas were isolated from 28.5% of pasteurized milk and 32% of white cheese samples. Standard Plate counts in the pasteurized milk samples ranged from 7.2 × 10* to 2.5 × 105 CFU/ml. Total and fecal coliform counts in white cheese samples ranged from 1.9 × 10* to 2.4 × 105 most probable number per g and 3.2 × 102 to 1.2 × 105 most probable number per g, respectively. It was possible to identify Aeromonas caviae (58.9%), Aeromonas hydrophila (12.8%), and Aeromonas schubertii (2.5%) among the cultures isolated from pasteurized milk samples. Twenty-five percent of the strains could only be classified as Aeromonas spp. In white cheese samples, unclassified strains were the most frequent isolates (61.5%) followed by A. hydrophila (26.9%), A. caviae (7.6%) and Aeromonas sobria (3.8%). Only strains of A. hydrophila and A. sobria showed high rate of positive results when tested for the production of hemolysin, cytotoxin, and staphylolytic activity. Heat-stable enterotoxin and autoagglutination test did not correlate as virulence factors. The presence of Aeromonas species in refrigerated food samples suggests that this microorganism could be a potential foodborne pathogen, and dairy products may represent an important vehicle of its transmission.

2017 ◽  
Vol 80 (5) ◽  
pp. 814-818 ◽  
Author(s):  
Angela Catford ◽  
Kyle Ganz ◽  
Sandeep Tamber

ABSTRACT A significant data gap exists with respect to the levels of pathogens in foods implicated in foodborne outbreaks. These data are essential for the quantification of pathogen exposure via the ingestion of contaminated food. Here we report the levels of the foodborne pathogen Salmonella in comminuted raw chicken products that had been breaded and then frozen. The products investigated were collected during four food safety investigations of foodborne outbreaks that occurred in Canada from 2014 to 2016. Most-probable-number (MPN) distribution analysis of the food samples revealed Salmonella levels of 0.0018 to 3 MPN/g, which is equivalent to 1 MPN per 0.33 to 556 g of product. These data suggest low levels of Salmonella may be associated with foodborne outbreaks.


2007 ◽  
Vol 70 (12) ◽  
pp. 2774-2781 ◽  
Author(s):  
I-CHEN YANG ◽  
DANIEL YANG-CHIH SHIH ◽  
JAN-YI WANG ◽  
TZU-MING PAN

Members of the Bacillus cereus group may produce diarrheal enterotoxins and could be potential hazards if they enter the food chain. Therefore, a method capable of detecting all the species in the B. cereus group rather than B. cereus alone is important. We selected nhe as the target and developed a real-time PCR assay to quantify enterotoxigenic strains of the B. cereus group. The real-time PCR assay was evaluated with 60 B. cereus group strains and 28 others. The assay was also used to construct calibration curves for different food matrices and feces. The assay has an excellent quantification capacity, as proved by its linearity (R2 > 0.993), wide dynamic quantification range (102 to 107 CFU/g for cooked rice and chicken, 103 to 107 CFU/ml for milk, and 104 to 107 CFU/g for feces), and adequate relative accuracy (85.5 to 101.1%). For the low-level contaminations, a most-probable-number real-time PCR assay was developed that could detect as low as 100 CFU/ml. Both assays were tested with real food samples and shown to be considerably appropriate for B. cereus group detection and quantification.


1987 ◽  
Vol 70 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Gayle A Lancette ◽  
John Lanier

Abstract Enumeration of Staphylococcus aureus in foods was collaboratively studied by comparing the present AOAC final action method, 46.062, which uses trypticase soy broth with 10% NaCl to a proposed replacment method which uses the same broth with 1% sodium pyruvate added. Fifteen collaborators analyzed uninoculated samples of milk, tuna salad, and ground turkey, as well as samples inoculated with low (102 cells/g), middle (104 cells/g), and high (106 cells/g) levels of S. aureus. The samples were frozen immediately to maintain the inoculated level of S. aureus in the food. A different strain of S. aureus was used for each food; heat-stressed S. aureus cells were used to inoculate the milk samples. The pyruvate-amended broth significantly (α = 0.05) increased enumeration of low, middle, and high levels of S. aureus from milk and ground turkey, and from tuna salad at middle and high levels. The pyruvate-amended media method has been adopted official first action to replace method 46.062


1985 ◽  
Vol 48 (2) ◽  
pp. 130-134 ◽  
Author(s):  
CARLOS ABEYTA ◽  
ANITA MICHALOVSKIS ◽  
MARLEEN M. WEKELL

The stormy fermentation reaction of Clostridium perfringens in iron milk medium was compared to that of several C. perfringens-like strains. These clostridia, C. barati, C. perenne, C. absonum, and C. paraperfringens are very similar to C. perfringens on the basis of certain biochemical reactions and, consequently, are often difficult to distinguish from C. perfringens. Furthermore, these related clostridia may also be present in foods. Results of this study demonstrate that after 18 h of incubation at 45°C, only C. perfringens gave a positive reaction in iron milk with inocula as low as 22 cells/g. Some of the other strains began to show only gas production at 18 h. After 24 to 42 h some strains gave positive results and after 72 h all were positive. Enumeration of C. perfringens from food samples in iron milk medium by a 3-tube most probable number (MPN) technique gave similar results to enumeration by plate count using Shahidi-Ferguson Perfringens (SFP) agar. Furthermore, a rapid positive response occurred after only 2 and 3 h incubation of iron milk inoculated with 108 and 107 cells/ml, respectively. The high selectivity, ease of identification and rapid growth of C. perfringens in iron milk make the iron milk MPN procedure a valuable assay for accurate enumeration and differentiation of C. perfringens from related Clostridia in food products.


1999 ◽  
Vol 65 (10) ◽  
pp. 4419-4424 ◽  
Author(s):  
Masashi Gamo ◽  
Tadashi Shoji

ABSTRACT A new approach to the community-level BIOLOG assay was proposed. This assay, which we call the BIOLOG-MPN assay, is a most-probable-number (MPN) assay that uses BIOLOG plates and multiple sole carbon sources, and the profiles obtained by this assay consist of MPNs estimated for the substrates in the BIOLOG plates. In order to demonstrate the performance of the BIOLOG-MPN assay, it was applied to pure cultures, model bacterial communities that contain two strains in different ratios, and microbial community samples. MPN estimation using BIOLOG plates worked well for the substrates on which utilizers can grow at a sufficiently high rate for color development under the conditions of the assay procedure. Furthermore, the results obtained using model communities showed that the MPNs obtained reflected the mixing ratios of pure cultures in the model communities. The profiles obtained using model communities and community samples were differentiated properly by statistical analyses. The results suggest that the BIOLOG-MPN assay is a promising procedure for obtaining a quantitative picture of the community structure.


1998 ◽  
Vol 61 (4) ◽  
pp. 444-449 ◽  
Author(s):  
D. E. TOWNSEND ◽  
R. L. IRVING ◽  
A. NAQUI

SimPlate for coliforms and Escherichia coli (CEc) is a new method for the detection and quantification of coliforms and E. coli in food. Internal validation of the method was carried out at IDEXX Laboratories (Westbrook, ME) with 180 food samples representing a variety of different food matrices and compared against three-tube MPN (most probable number), VRBA (violet red bile agar) + MUG, and Petrifilm (E. coli count) methods. SimPlate CEc was highly correlated with each of these methods for the quantification of coliform bacteria (r ≥ 0.90). An insignificant number of food samples were found to contain E. coli; therefore, no meaningful correlation data could be generated. Four hundred forty-four additional food samples were tested at five collaborating laboratories for the presence of coliforms and E. coli using SimPlate CEc and either VRBA + MUG or Petrifilm (E. coli count). Regression analysis of data from SimPlate for CEc versus Petrifilm E. coli count plates generated correlation coefficients (r) of at least 0.89 for total coliforms and at least 0.90 for generic E. coli. Correlation coefficients between SimPlate for CEc and VRBA + MUG data were at least 0.90 for coliforms and at least 0.86 for E. coli. SimPlate for CEc demonstrated better recovery of E. coli than Petrifilm when high populations of bacteria were present. E. coli was not detected in 20 of 50 (40%) raw milk samples tested by the Petrifilm method due to the presence of interfering coliform and noncoliform bacteria. It is concluded that SimPlate for CEc is a suitable alternative for determining numbers of coliform bacteria and E. coli in food.


Food Research ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 982-990
Author(s):  
Ubong Anyi ◽  
C.Y. New ◽  
L.C. Chai ◽  
Y.Y. Loo ◽  
Nor Khaizura M.A.R. ◽  
...  

Bacillus cereus is a major foodborne pathogen of great concern to the dairy industry owing to its resilient spores as well as the adverse effect of its toxins. At present, there is no informational study available to solve or pinpoint the UHT chocolate milk contamination issue in Malaysia. This work aimed to investigate the prevalence and contamination level of B. cereus s.l. in UHT chocolate milk and to suggest the appropriate solution for the issue. In the present study, B. cereus s.l. prevalence and contamination level in individually packed UHT chocolate milk from processing factories was evaluated. The prevalence and concentration of B. cereus s.l. were determined via MPN-PCR (Most Probable Number-Polymerase Chain Reaction) assay. Results showed that 31.11% from 220 of UHT chocolate milk tested contained Bacillus spp.; of this Bacillus spp. positive samples, 24.30% were also positive for B. cereus s.l. with concentration ranging from less than 3 to more than 1100 MPN/mL. Findings from this study highlighted the possibility of UHT chocolate milk as a potential source of B. cereus s.l. infection. Therefore, findings emphasized the needs to revise, monitor and improve UHT sterilization process to reduce infection risk. Furthermore, it is also essential to maintain the hygiene to minimize initial microbial load and contamination of UHT chocolate milk, beginning from production to retail.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoke Xu ◽  
Jianheng Cheng ◽  
Qingping Wu ◽  
Jumei Zhang ◽  
Tengfei Xie

Abstract Background Vibrio parahaemolyticus is a major foodborne pathogen, particularly in Asian countries. Increased occurrence of outbreaks of V. parahaemolyticus gastroenteritis in China indicates the need to evaluation of the prevalence of this pathogenic species. V. parahaemolyticus distribution in shellfish from the eastern coast of China has been reported previously. However, to date, the prevalence of V. parahaemolyticus in retail aquatic products in North China has not been determined. To investigate the prevalence of V. parahaemolyticus in aquatic products in North China, 260 aquatic product samples were obtained from retail markets in 6 provinces of North China from November to December in 2012 and July to August in 2013. Results V. parahaemolyticus was detected in 94 (36.2 %) of the samples by the most probable number method. The density of V. parahaemolyticus ranged from 1.50 to 1100 MPN/g. V. parahaemolyticus was detected at a rate of 50.0 % and 22.7 % in summer and in winter, respectively. The density of V. parahaemolyticus was significantly higher in summer than in winter, with mean levels of 16.5 MPN/g and 5.0 MPN/g, respectively. Among 145 V. parahaemolyticus isolates examined, none of the isolates possessed tdh and trh. In multiplex PCR-based O-antigen serotyping of these 145 isolates, all serotypes, other than O6, O7, and O9, were detected, and serotype O2 was found to be the most prevalent (detected in 54 isolates). The 145 isolates were grouped into 7 clusters by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) at a similarity coefficient of 0.66. The antimicrobial resistance patterns of these 145 isolates to 12 antimicrobial agents revealed that most of the isolates were resistant to streptomycin (86.2 %), while fewer were resistant to ampicillin (49.6 %), cefazolin (43.5 %), cephalothin (35.9 %), and kanamycin (22.1 %). All of the examined isolates were susceptible to azithromycin and chloramphenicol. Conclusions The findings of this study will help in defining appropriate monitoring programs, understanding of the dissemination of antibiotic resistant strains, and providing information for the assessment of exposure to this microorganism at the consumption level.


Author(s):  
Sakura Arai ◽  
Kayoko Ohtsuka ◽  
Noriko Konishi ◽  
Kenji Ohya ◽  
Takayuki Konno ◽  
...  

Escherichia albertii is an emerging foodborne pathogen. The source of infection in most foodborne outbreaks is unknown, as it is difficult to isolate E. albertii from suspected foods or water. E. albertii has a broad host range among birds and can be isolated from chicken meat. In this study, PCR assay, enrichment and isolation conditions for detecting E. albertii in chicken meat were evaluated. The growth of 48 E. albertii strains isolated in Japan between 1994 and 2018 was evaluated in modified EC broth (mEC) and mEC supplemented with novobiocin (NmEC) and on different media containing carbohydrates. In addition, the enzyme for nested PCR, the enrichment condition, the most probable number (MPN) method, and agar media were also evaluated for chicken meat. To distinguish E. albertii from presumptive non-E. albertii bacteria, desoxycholate hydrogen sulfide lactose agar (DHL), MacConkey agar (MAC), and these agars supplemented with rhamnose and xylose (RX-DHL and RX-MAC, respectively) were used. All E. albertii strains grew in mEC and NmEC at both 36°C and 42°C and did not utilize rhamnose, sucrose, or xylose. Both the first PCR and nested PCR, using TaKaRa Ex Taq which was 10–100 times superior to the other enzymes, showed positive results in enrichment culture of 25 g of chicken meat inoculated with >20 CFU of E. albertii in mEC and NmEC at 42°C for 22 ± 2 h. Thus, the first PCR was sensitive enough to detect E. albertii in chicken meat. The MPN values in mEC and NmEC were 0.5- and 2.3-fold of inoculated bacterial concentration, respectively. E. albertii in chicken meat was more efficiently isolated with enrichment in NmEC (70.1-100%) and plating onto RX-DHL (85.4%) and RX-MAC (100%) compared to enrichment in mEC (53.5-83.3%) and plating onto DHL (70.1%) and MAC (92.4%), respectively. Thus, optimized conditions for the surveillance of E. albertii contamination in food and investigations of E. albertii outbreaks, including the infectious dose, were clarified.


1975 ◽  
Vol 38 (12) ◽  
pp. 745-746 ◽  
Author(s):  
J. A. KOBURGER ◽  
A. R. NORDEN

It was possible to compare recovery of yeasts and molds from 30 food samples by three methods, employing plate count agar and broth with added antibiotics. Although the pour plate and surface plate methods gave comparable results, the Most Probable Number (MPN) procedure consistently yielded the highest counts. With some of the samples, the MPN method was the only one in which recovery occurred. It thus appears that this procedure is practical for detection of fungi and may be of use in survey work or when analyzing foods containing low numbers of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document