Detection and Isolation of Escherichia coli with a Coding Gene for Enteroaggregative Escherichia coli Heat-Stable Enterotoxin 1 from Food and Comparison with Fecal Isolates

2004 ◽  
Vol 67 (10) ◽  
pp. 2117-2122 ◽  
Author(s):  
HIRONO TOSHIMA ◽  
EIKO UENAKA ◽  
YING BI ◽  
HIROMI NAKAMURA ◽  
JUN OGASAWARA ◽  
...  

Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1) was originally regarded as a putative enterotoxin of enteroaggregative Escherichia coli. Although its etiological role has not yet been elucidated, it has been epidemiologically suggested that some strains of E. coli possessing EAST1-coding gene (astA) but no other identifiable pathogenic properties comprise a new group of diarrhea-associated E. coli (EAST1EC). However, the source of the organisms and their prevalence in foods are still obscure. In this study, methods for detection of the organisms in foods heavily contaminated with coliforms were evaluated and properties of the isolated strains were compared with those of fecal strains. Four enrichment methods (brilliant green lactose bile broth, E. coli, lauryl tryptose broth, and a combination of brain heart infusion broth and tryptone phosphate broth) were evaluated through inspection of 115 samples. PCR showed positive results in 26 samples after enrichment with a combination of brain heart infusion broth and tryptone phosphate broth, and EAST1EC was successfully isolated from 18 samples. Fifteen samples showed a positive reaction in the PCR test after enrichment by the other methods, and the organisms were isolated from only 10 specimens. The highest prevalence of EAST1EC was found in animal products (16 of 54, 29.6%); the organism was rarely found in foods of plant origin (2 of 45, 4.4%) or fishery products (1 of 16, 6.3%). Although EAST1EC is unexpectedly common in animal products, its potential as a human pathogen remains uncertain because the possession of some virulence properties differs significantly between strains from fecal specimens and those from foods. Some food isolates, however, possess the same characteristics as diarrheal isolates do. It is necessary to clarify the pathogenicity of EAST1EC and the significance of food as a source of infection.

2018 ◽  
Vol 44 (1) ◽  
pp. 6
Author(s):  
Guilherme Fonseca de Souza ◽  
Silvio Luís da Silveira Rocha ◽  
Thales Quedi Furian ◽  
Karen Apellanis Borges ◽  
Felipe De Oliveira Salle ◽  
...  

Background: Avian Pathogenic Escherichia coli is the main agent of colibacillosis, a systemic disease that causes considerable economic losses to the poultry industry. In vivo experiments are used to measure the ability of E. coli to be pathogenic. Generally, these experiments have proposed different criteria for results interpretation and did not take into account the death time. The aim of this study was to propose a new methodology for the classification of E. coli pathogenicity by the establishment of a pathogenicity index based in the lethality, death time and the ability of the strain to cause colibacillosis lesions in challenged animals.Materials, Methods & Results: A total of 293 isolates of E. coli were randomly selected to this study. The strains were isolated from cellulitis lesions, broiler bedding material or respiratory diseases and were previously confirmed through biochemical profile. The bacterial isolates were kept frozen at -20°C. The strains were retrieved from stocks and cultured in brain-heart infusion broth overnight at 37°C to obtain a final concentration of 109 UFC/mL. A total of 2940 one-dayold chicks from commercial breeding hens were randomly assigned to groups containing 10 animals and each group was subcutaneously inoculated in the abdominal region with 0.1 mL of the standard inoculum solution containing each of the strains. A control group of 10 broilers were inoculated with 0.1 mL of brain-heart infusion broth by the same route. The chicks were kept for seven days. They were observed at intervals of 6, 12 and 24 h post-inoculation during the first days. From the second day on, the chicks were observed at intervals of 12 h. According to the death time and to the scores of each lesion (aerosaculitis, pericarditis, perihepatitis, peritonitis and cellulitis), a formula to determine the Individual Pathogenicity Index was established. A value of 10 was established as the maximum pathogenicity rate for an inoculated bird. From this rate, 5 points corresponded to scores for gross lesions present at necropsy. For each lesion present, it represents 1 point. The remaining 5 points corresponded to the death time. To obtain the death time value, an index of 1, corresponding to the maximum value assigned to a death on the first day, was divided by the number of days that the birds were evaluated, resulting in a value of 0.1428, which corresponded to a survival bonus factor. It was possible to classify E. coli strains into four pathogenicity groups according to the pathogenicity index: high pathogenicity (pathogenicity index ranging from 7 to 10), intermediate pathogenicity (pathogenicity index ranging from 4 to 6.99), low pathogenicity (pathogenicity index ranging from 1 to 3.99) and apathogenic (pathogenicity index ranging from 0 to 0.99). The analysis of the strains according to their origin revealed that isolates from broiler bedding material presented a lower pathogenicity index.Discussion: It is possible that the source of isolation implies in different results, depending on the criteria adopted. This data reinforces the importance of use a more accurate mathematical model to represents the biological phenomenon. In the study, all avian pathogenic Escherichia coli strains were classified based on a pathogenicity index and the concept of the death time represents an interesting parameter to measure the ability of the strain to promote acute and septicemic manifestation. The use of a support method for poultry veterinary diagnostic accompanying the fluctuation of the bacteria pathogenicity inside the farms may indicate a rational use of antimicrobial in poultry industry.


1991 ◽  
Vol 37 (5) ◽  
pp. 407-410
Author(s):  
Mônica A. M. Vieira ◽  
Beatriz E. C. Guth ◽  
Tânia A. T. Gomes

DNA probes that identify genes coding for heat-labile type I (LT-I) and heat-stable type 1 (ST-I) enterotoxins, enteropathogenic Escherichia coli adherence factor (EAF), and Shigella-like, invasiveness (INV) are used to evaluate the sensitivity and specificity of stool blots in comparison with the sensitivity and specificity of colony blots in detecting enteropathoghens. The sensitivities of the probes in stool blots are 91.7% for the LT-I probe, 76.9% for the ST-I probes, 78.9% for the EAF probe, and 45.5% for the INV probe. The specificity of all probes is higher than 95%. In general, the stool blot method identifies as many if not more LT-I-, ST-I-, and EAF-producing E. coli infections than the colony blots. Key words: DNA probes, stool blots, enteropathogens, diagnosis.


2003 ◽  
Vol 130 (3) ◽  
pp. 573-573
Author(s):  
Z. ZHOU ◽  
J. OGASAWARA ◽  
Y. NISHIKAWA

Epidemiol. Infect. 128 (2002), 363–371An outbreak of gastroenteritis in Osaka, Japan due toEscherichia coliserogroup O166[ratio ]H15 that had a coding gene for enteroaggregativeE. coliheat-stable enterotoxin 1 (EAST1)Tables 1 and 2 were omitted


2019 ◽  
Vol 11 (04) ◽  
pp. 346-351
Author(s):  
Pankaj Singh ◽  
Sharda C. Metgud ◽  
Subarna Roy ◽  
Shashank Purwar

Abstract CONTEXT: Diarrheagenic Escherichia coli (DEC) is the leading cause of infectious diarrhea in developing countries. On the basis of virulence and phenotypic characteristics, the DEC is categorized into multiple pathotypes. Each pathotype has different pathogenesis and geographical distribution. Thus, the proper management of disease relies on rapid and accurate identification of DEC pathotypes. AIMS: The aim of the study was to determine the prevalence of DEC pathotypes in India. MATERIALS AND METHODS: A cross-sectional study was carried out between January 2008 and December 2012 at Jawaharlal Nehru Medical College and KLES Dr. Prabhakar Kore Hospital and Medical Research Center, Belgaum (Karnataka), India. A total of 300 stool samples were collected from diarrhea patients with age >3 months. The DEC was identified by both conventional and molecular methods. RESULTS: Of 300 samples, E. coli were detected in 198 (66%) and 170 (56.6%) samples by culture and polymerase chain reaction, respectively. Among DEC (n = 198) isolates, eae gene (59.5%) was the most prevalent followed by stx (27.7%), east (27.2%), elt (12.6%), est (10.6%), ipaH (5.5%), and eagg (1.5%) genes. On the basis of virulence genes, enteropathogenic E. coli (33.8%) was the most common pathotype followed by Shiga toxin-producing E. coli (STEC, 23.2%), enterotoxigenic E. coli (ETEC, 13.6%), enteroinvasive E. coli (5.5%), enteroaggregative heat-stable enterotoxin 1-harboring E. coli (EAST1EC, 4.5%), STEC/ETEC (3.5%), STEC/enteroaggregative E. coli (STEC/EAEC, 1.0%), and EAEC (0.05%). CONCLUSIONS: The hybrid DEC is potentially more virulent than basic pathotypes. The pathotyping should be included in clinical settings for the proper management of DEC-associated diarrhea.


2003 ◽  
Vol 71 (3) ◽  
pp. 1505-1512 ◽  
Author(s):  
Stuart W. Naylor ◽  
J. Christopher Low ◽  
Thomas E. Besser ◽  
Arvind Mahajan ◽  
George J. Gunn ◽  
...  

ABSTRACT Escherichia coli O157:H7 causes bloody diarrhea and potentially fatal systemic sequelae in humans. Cattle are most frequently identified as the primary source of infection, and E. coli O157:H7 generally colonizes the gastrointestinal tracts of cattle without causing disease. In this study, persistence and tropism were assessed for four different E. coli O157:H7 strains. Experimentally infected calves shed the organism for at least 14 days prior to necropsy. For the majority of these animals, as well as for a naturally colonized animal obtained from a commercial beef farm, the highest numbers of E. coli O157:H7 were found in the feces, with negative or significantly lower levels detected in lumen contents taken from the gastrointestinal tract. Detailed examination demonstrated that in these individuals the majority of tissue-associated bacteria were adherent to mucosal epithelium within a defined region extending up to 5 cm proximally from the recto-anal junction. The tissue targeted by E. coli O157:H7 was characterized by a high density of lymphoid follicles. Microcolonies of the bacterium were readily detected on the epithelium of this region by immunofluorescence microscopy. As a consequence of this specific distribution, E. coli O157:H7 was present predominately on the surface of the fecal stool. In contrast, other E. coli serotypes were present at consistent levels throughout the large intestine and were equally distributed in the stool. This is a novel tropism that may enhance dissemination both between animals and from animals to humans. The accessibility of this site may facilitate simple intervention strategies.


1991 ◽  
Vol 273 (3) ◽  
pp. 587-592 ◽  
Author(s):  
K M LeVan ◽  
E Goldberg

The cDNA encoding the C4 isoenzyme of lactate dehydrogenase (LDH-C4) was engineered for expression in Escherichia coli. The Ldh-c open reading frame was constructed as a cassette for production of the native protein. The modified Ldh-c cDNA was subcloned into the prokaryotic expression vector pKK223-3. Transformed E. coli cells were grown to mid-exponential phase, and induced with isopropyl beta-D-thiogalactopyranoside for positive regulation of the tac promoter. Induced cells expressed the 35 kDa subunit, which spontaneously formed the enzymically active 140 kDa tetramer. Human LDH-C4 was purified over 200-fold from litre cultures of cells by AMP and oxamate affinity chromatography to a specific activity of 106 units/mg. The enzyme was inhibited by pyruvate concentrations above 0.3 mM, had a Km for pyruvate of 0.03 mM, a turnover number (nmol of NADH oxidized/mol of LDH-C4 per min at 25 degrees C) of 14,000 and was heat-stable.


1982 ◽  
Vol 242 (4) ◽  
pp. G360-G363 ◽  
Author(s):  
J. R. Mathias ◽  
J. Nogueira ◽  
J. L. Martin ◽  
G. M. Carlson ◽  
R. A. Giannella

Escherichia coli heat-stable enterotoxin is a low-molecular-weight substance that has been shown to induce the active secretion of fluid and electrolytes in the small intestine. In this study, we have characterized the effects of purified E. coli heat-stable toxin (ST, strain 18D, serotype 042:K86:H37) on the motility of rabbit small intestine by using myoelectric recording techniques. Substances, such as cholera toxin, that activate the adenylate cyclase-cAMP system induced predominantly migrating action-potential complex activity. E. coli ST, a toxin that activates the guanylate cyclase-cGMP system, was infused into isolated in vivo ileal loops of New Zealand White rabbits. Inactivated toxin was also studied by exposing the ST to 1 mM dithiothreitol for 90 min. Active E. coli ST induced only repetitive bursts of action potentials. When the toxin was inactivated with dithiothreitol, no alteration in myoelectric activity was observed. We speculate that repetitive bursts of action-potential activity may represent a virulent factor of the bacterium, altering motor activity to slow transit and allowing for bacterial proliferation and invasion.


1973 ◽  
Vol 137 (4) ◽  
pp. 1009-1023 ◽  
Author(s):  
Nathaniel F. Pierce

Natural cholera toxoid appears to act as a competitive inhibitor of cholera enterotoxin and is thus a useful tool for studying the interaction of cholera enterotoxin with cell membranes. Cholera enterotoxin binds to gut mucosa more rapidly than does its natural toxoid. Once binding occurs, however, it appears to be prolonged for both materials. Formalinized cholera toxoid has no inhibitory effect upon cholera enterotoxin. Enterotoxic activity, ability to bind to gut mucosa, and antitoxigenicity appear to be independent properties of cholera enterotoxin. Natural cholera toxoid does not inhibit Escherichia coli enterotoxin, indicating that although the two enterotoxins activate the same mucosal secretory mechanism they occupy different binding sites in the mucosa. Ganglioside, which may be the mucosal receptor of cholera enterotoxin, is highly efficient in deactivating cholera enterotoxin. By contrast, ganglioside is relatively inefficient in deactivating heat-labile E. coli enterotoxin and is without effect upon the heat-stable component of E. coli enterotoxin. These findings suggest that ganglioside is not likely to be the mucosal receptor for E. coli enterotoxin. Differences in cellular binding of E. coli and cholera enterotoxins may explain, at least in part, the marked differences in the time of onset and duration of their effects upon gut secretion.


2004 ◽  
Vol 67 (5) ◽  
pp. 1014-1016 ◽  
Author(s):  
M. J. CHO ◽  
R. W. BUESCHER ◽  
M. JOHNSON ◽  
M. JANES

The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37° C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.


1992 ◽  
Vol 55 (10) ◽  
pp. 792-795
Author(s):  
KARSTEN FEHLHABER ◽  
RÜDIGER-THOMAS HESELER

Pasteurized milk, liquid egg, minced meat, and various salads were artificially contaminated with varying numbers of cells from six Escherichia coli (E. coli) strains able to produce heat-stable enterotoxins (ST). The ST-producing E. coli were detected by the following procedure within 24 h without isolation by cultivation. After enrichment of the food sample in GN broth (4 h at 37°C), the material was transferred to brain heart infusion broth, incubated (16–18 h at 37°C), centrifuged (20 min, 7000 g) and heated to 80°C for 10 min, the supernatant was tested with the infant mouse test. The sensitivity (= ratio of detectable E. coli per total microbial numbers in the food sample) of the test procedure was high even in many food samples with a considerable competitive microbial flora. The procedure was used to test 419 routine food samples. Enterotoxigenic bacteria were found in 7 samples of liquid egg and 4 samples of salad. The test is recommended as a rapid screening test in food control.


Sign in / Sign up

Export Citation Format

Share Document