Inactivation of Protozoan Parasites in Food, Water, and Environmental Systems

2006 ◽  
Vol 69 (11) ◽  
pp. 2786-2808 ◽  
Author(s):  
MARILYN C. ERICKSON ◽  
YNES R. ORTEGA

Protozoan parasites can survive under ambient and refrigerated storage conditions when associated with a range of substrates. Consequently, various treatments have been used to inactivate protozoan parasites (Giardia, Cryptosporidium, and Cyclospora) in food, water, and environmental systems. Physical treatments that affect survival or removal of protozoan parasites include freezing, heating, filtration, sedimentation, UV light, irradiation, high pressure, and ultrasound. Ozone is a more effective chemical disinfectant than chlorine or chlorine dioxide for inactivation of protozoan parasites in water systems. However, sequential inactivation treatments can optimize existing treatments through synergistic effects. Careful selection of methods to evaluate inactivation treatments is needed because many studies that have employed vital dye stains and in vitro excystation have produced underestimations of the effectiveness of these treatments.

2021 ◽  
Vol 11 ◽  
Author(s):  
Timothy C. Wright ◽  
Victoria L. Dunne ◽  
Ali H. D. Alshehri ◽  
Kelly M. Redmond ◽  
Aidan J. Cole ◽  
...  

Abiraterone acetate and Enzalutamide are novel anti-androgens that are key treatments to improve both progression-free survival and overall survival in patients with metastatic castration-resistant prostate cancer. In this study, we aimed to determine whether combinations of AR inhibitors with radiation are additive or synergistic, and investigated the underlying mechanisms governing this. This study also aimed to compare and investigate a biological rationale for the selection of Abiraterone versus Enzalutamide in combination with radiotherapy as currently selection is based on consideration of side effect profiles and clinical experience. We report that AR suppression with Enzalutamide produces a synergistic effect only in AR-sensitive prostate models. In contrast, Abiraterone displays synergistic effects in combination with radiation regardless of AR status, alluding to potential alternative mechanisms of action. The underlying mechanisms governing this AR-based synergy are based on the reduction of key AR linked DNA repair pathways such as NHEJ and HR, with changes in HR potentially the result of changes in cell cycle distribution, with these reductions ultimately resulting in increased cell death. These changes were also shown to be conserved in combination with radiation, with AR suppression 24 hours before radiation leading to the most significant differences. Comparison between Abiraterone and Enzalutamide highlighted Abiraterone from a mechanistic standpoint as being superior to Abiraterone for all endpoints measured. Therefore, this provides a potential rationale for the selection of Abiraterone over Enzalutamide.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1472
Author(s):  
Takuya Terai ◽  
Tomoyuki Koike ◽  
Naoto Nemoto

Binding peptides for given target molecules are often selected in vitro during drug discovery and chemical biology research. Among several display technologies for this purpose, complementary DNA (cDNA) display (a covalent complex of a peptide and its encoding cDNA linked via a specially designed puromycin-conjugated DNA) is unique in terms of library size, chemical stability, and flexibility of modification. However, selection of cDNA display libraries often suffers from false positives derived from non-specific binding. Although rigorous washing is a straightforward solution, this also leads to the loss of specific binders with moderate affinity because the interaction is non-covalent. To address this issue, herein, we propose a method to covalently link cDNA display molecules with their target proteins using light irradiation. We designed a new puromycin DNA linker that contains a photocrosslinking nucleic acid and prepared cDNA display molecules using the linker. Target proteins were also labeled with a short single-stranded DNA that should transiently hybridize with the linker. Upon ultraviolet (UV) light irradiation, cDNA display molecules encoding correct peptide aptamers made stable crosslinked products with the target proteins in solution, while display molecules encoding control peptides did not. Although further optimization and improvement is necessary, the results pave the way for efficient selection of peptide aptamers in multimolecular crowding biosystems.


2010 ◽  
Vol 73 (3) ◽  
pp. 556-561 ◽  
Author(s):  
JI-HYOUNG HA ◽  
SANG-DO HA

The purpose of this study was to determine whether combined treatments would produce synergistic disinfection effects on food products during food processing compared with single treatments. We investigated the bactericidal effects of a commercial chemical disinfectant (ethanol) and of UV radiation on Bacillus cereus F4810/72, Cronobacter sakazakii KCTC 2949, Staphylococcus aureus ATCC 35556, Escherichia coli ATCC 10536, and Salmonella enterica Typhimurium NO/NA in vitro. Various concentrations of ethanol (10, 30, 40, and 50%) were tested with various exposure doses of UV radiation (6, 96, 216, 360, and 504 mWs/cm2) with a UV lamp. The combined ethanol-UV treatments resulted in greater reductions in bacterial counts than did either treatment alone. The synergistic effect values for B. cereus, C. sakazakii, S. aureus, S. enterica Typhimurium NO/NA, and E. coli were 0.40 to 1.52, 0.52 to 1.74, 0.20 to 2.32, 0.07 to 1.14, and 0.02 to 1.75 log CFU/ml, respectively. The results of this study suggest that a significant synergistic benefit results from combining ethanol and UV treatments against foodborne pathogens in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiqi Li ◽  
Fuhui Zhang ◽  
Xiuchan Xiao ◽  
Yanzhi Guo ◽  
Zhining Wen ◽  
...  

Prostate cancer (PRAD) is a major cause of cancer-related deaths. Current monotherapies show limited efficacy due to often rapidly emerging resistance. Combination therapies could provide an alternative solution to address this problem with enhanced therapeutic effect, reduced cytotoxicity, and delayed the appearance of drug resistance. However, it is prohibitively cost and labor-intensive for the experimental approaches to pick out synergistic combinations from the millions of possibilities. Thus, it is highly desired to explore other efficient strategies to assist experimental researches. Inspired by the challenge, we construct the transcriptomics-based and network-based prediction models to quickly screen the potential drug combination for Prostate cancer, and further assess their performance by in vitro assays. The transcriptomics-based method screens nine possible combinations. However, the network-based method gives discrepancies for at least three drug pairs. Further experimental results indicate the dose-dependent effects of the three docetaxel-containing combinations, and confirm the synergistic effects of the other six combinations predicted by the transcriptomics-based model. For the network-based predictions, in vitro tests give opposite results to the two combinations (i.e. mitoxantrone-cyproheptadine and cabazitaxel-cyproheptadine). Namely, the transcriptomics-based method outperforms the network-based one for the specific disease like Prostate cancer, which provide guideline for selection of the computational methods in the drug combination screening. More importantly, six combinations (the three mitoxantrone-containing and the three cabazitaxel-containing combinations) are found to be promising candidates to synergistically conquer Prostate cancer.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
R Bertóti ◽  
Á Alberti ◽  
A Böszörményi ◽  
R Könye ◽  
T Horváth ◽  
...  

Author(s):  
Françoise Bernerd ◽  
Daniel Asselineau ◽  
Mathilde Frechet ◽  
Alain Sarasin ◽  
Thierry Magnaldo

Author(s):  
Michael Russelle Alvarez ◽  
Paolo Robert Bueno ◽  
Raymond Oliver Cruz ◽  
Richard Macapulay ◽  
Francis Jayson Vallesfin ◽  
...  

Plant-derived digestive enzyme inhibitors particularly those targeted to carbohydrate metabolism has been the focus of recent studies as natural supplements for weight control and diabetes. The present study explores the salivary amylase inhibition activity of Garcinia mangostana (Linn.) pericarp extracts and Carica papaya (Linn.) leaf extracts and fractions, as well as perform phytochemical screening and quantification, and thin layer – and high performance liquid chromatographic profiling. ­Results show that crude extracts and purified fractions were able to inhibit salivary amylase, with C. papaya fraction 1 being the most active at 30.89% inhibition. Phytochemical screening of all extracts tested ­positive for tannins, glycosides, phenolics, flavonoids and alkaloids. Quantification of phenolics showed that extracts contained high levels of phenolics, with C. papaya crude extract having the highest content with 219.0±12.7 mg GAE/g extract followed by G. mangostana crude extract with 247.1±18.0 mg GAE/g extract. Quantification of total flavonoids also showed C. papaya crude extract to contain the highest content with 55.12±0.679 mg QE/g extract. All extracts contained negligible alkaloid content, though. HPLC and TLC profiling showed several peaks and bands, when viewed in 210 nm and UV light, respectively. These results demonstrate in vitro the salivary amylase inhibitory activity of both plants and their potential as antidiabetic drug candidates; however, further studies need to be done, like isolation and structure elucidation of active components and toxicity assays. Keywords: Amylase inhibition, phytochemical quantification, Carica papaya, Garcinia mangostana


Sign in / Sign up

Export Citation Format

Share Document