Antifungal Activity of Lactobacillus paracasei subsp. tolerans against Fusarium proliferatum and Fusarium graminearum in a Liquid Culture Setting

2008 ◽  
Vol 71 (11) ◽  
pp. 2213-2216 ◽  
Author(s):  
YOUSEF I. HASSAN ◽  
LLOYD B. BULLERMAN

Lactobacillus paracasei subsp. tolerans, isolated from a traditional sourdough bread culture and previously shown to have antifungal activity against Fusarium species, was tested for inhibition of growth of Fusarium proliferatum M 5991 and M 5689 and F. graminearum R 4053 in a liquid medium setting. This isolate completely inhibited the growth of F. proliferatum M 5689 and M 5991 and F. graminearum R 4053, whereas such growth was not inhibited in the control in a supernatant agar plate assay. When this isolate was tested using 2M medium (MRS–modified Myro media) known for supporting Fusarium growth and trichothecene production, it was found to inhibit fungal growth but promote mycotoxin production at the same time. The antifungal activity was determined to be the result of organic acids and low pH. The mechanism of the mycotoxin production promotion requires further investigation.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1725
Author(s):  
Elisabetta Troni ◽  
Giovanni Beccari ◽  
Roberto D’Amato ◽  
Francesco Tini ◽  
David Baldo ◽  
...  

In this study, the in vitro effects of different Se concentrations (5, 10, 15, 20, and 100 mg kg−1) from different Se forms (sodium selenite, sodium selenate, selenomethionine, and selenocystine) on the development of a Fusarium proliferatum strain isolated from rice were investigated. A concentration-dependent effect was detected. Se reduced fungal growth starting from 10 mg kg−1 and increasing the concentration (15, 20, and 100 mg kg−1) enhanced the inhibitory effect. Se bioactivity was also chemical form dependent. Selenocystine was found to be the most effective at the lowest concentration (5 mg kg−1). Complete growth inhibition was observed at 20 mg kg−1 of Se from selenite, selenomethionine, and selenocystine. Se speciation analysis revealed that fungus was able to change the Se speciation when the lowest Se concentration was applied. Scanning Electron Microscopy showed an alteration of the fungal morphology induced by Se. Considering that the inorganic forms have a higher solubility in water and are cheaper than organic forms, 20 mg kg−1 of Se from selenite can be suggested as the best combination suitable to inhibit F. proliferatum strain. The addition of low concentrations of Se from selenite to conventional fungicides may be a promising alternative approach for the control of Fusarium species.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 495 ◽  
Author(s):  
Kalliopi Mylona ◽  
Esther Garcia-Cela ◽  
Michael Sulyok ◽  
Angel Medina ◽  
Naresh Magan

Two garlic-derived compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), were examined for their efficacy against mycotoxigenic Fusarium species (F. graminearum, F. langsethiae, F. verticillioides). The objectives were to assess the inhibitory effect of these compounds on growth and mycotoxin production in vitro, and in situ in artificially inoculated wheat, oats and maize with one isolate of each respectively, at different water activity (aw) conditions when stored for up to 20 days at 25 °C. In vitro, 200 ppm of either PTS or PTSO reduced fungal growth by 50–100% and mycotoxin production by >90% depending on species, mycotoxin and aw conditions on milled wheat, oats and maize respectively. PTS was generally more effective than PTSO. Deoxynivalenol (DON) and zearalenone (ZEN) were decreased by 50% with 80 ppm PTSO. One-hundred ppm of PTS reduced DON and ZEN production in wheat stored at 0.93 aw for 20 days, although contamination was still above the legislative limits. Contrasting effects on T-2/HT-2 toxin contamination of oats was found depending on aw, with PTS stimulating production under marginal conditions (0.93 aw), but at 0.95 aw effective control was achieved with 100 ppm. Treatment of stored maize inoculated with F. verticilliodies resulted in a stimulation of total fumonsins in most treatments. The potential use of such compounds for mycotoxin control in stored commodities is discussed.


1989 ◽  
Vol 52 (10) ◽  
pp. 737-742 ◽  
Author(s):  
JOHN T. MILLS

The occurrence and development of toxigenic Fusarium species on cereal and other seeds is examined in an ecological context. Current knowledge is reviewed of factors influencing fungal growth and mycotoxin development in field and storage environments by F. sporotrichioides, F. poae, F. semitectum, F. equiseti, F. graminearum, F. culmorum, F. crookwellense, F. moniliforme, F. subglutinans, and F. oxysporum. Most ecological studies have been concerned with F. graminearum and production of deoxynivalenol and zearalenone on cereals; much more ecological information is needed on the growth and mycotoxin production by other toxigenic Fusarium species.


2016 ◽  
Vol 79 (10) ◽  
pp. 1753-1758 ◽  
Author(s):  
ELENA FERRUZ ◽  
SUSANA LORAN ◽  
MARTA HERRERA ◽  
ISABEL GIMENEZ ◽  
NOEMI BERVIS ◽  
...  

ABSTRACT The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium. The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae. However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 653
Author(s):  
Davide Ferrigo ◽  
Valentina Scarpino ◽  
Francesca Vanara ◽  
Roberto Causin ◽  
Alessandro Raiola ◽  
...  

Fusarium proliferatum and Fusarium subglutinans are common pathogens of maize which are known to produce mycotoxins, including moniliformin (MON) and fumonisins (FBs). Fungal secondary metabolism and response to oxidative stress are interlaced, where hydrogen peroxide (H2O2) plays a pivotal role in the modulation of mycotoxin production. The objective of this study is to examine the effect of H2O2-induced oxidative stress on fungal growth, as well as MON and FBs production, in different isolates of these fungi. When these isolates were cultured in the presence of 1, 2, 5, and 10 mM H2O2, the fungal biomass of F. subglutinans isolates showed a strong sensitivity to increasing oxidative conditions (27–58% reduction), whereas F. proliferatum isolates were not affected or even slightly improved (45% increase). H2O2 treatment at the lower concentration of 1 mM caused an almost total disappearance of MON and a strong reduction of FBs content in the two fungal species and isolates tested. The catalase activity, surveyed due to its crucial role as an H2O2 scavenger, showed no significant changes at 1 mM H2O2 treatment, thus indicating a lack of correlation with MON and FB changes. H2O2 treatment was also able to reduce MON and FB content in certified maize material, and the same behavior was observed in the presence and absence of these fungi, highlighting a direct effect of H2O2 on the stability of these mycotoxins. Taken together, these data provide insights into the role of H2O2 which, when increased under stress conditions, could affect the vegetative response and mycotoxin production (and degradation) of these fungi.


2016 ◽  
Vol 83 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Raúl Ricardo Gamba ◽  
Graciela De Antoni ◽  
Angela León Peláez

The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates – a readily available by-product of the dairy industry – on F. graminearum germination, growth, and toxin production.


2004 ◽  
Vol 4 (4) ◽  
pp. 175-182 ◽  
Author(s):  
K. Rojek ◽  
F.A. Roddick ◽  
A. Parkinson

Phanerochaete chrysosporium was shown to rapidly decolorise a solution of natural organic matter (NOM). The effect of various parameters such as carbon and nitrogen content, pH, ionic strength, NOM concentration and addition of Mn2+ on the colour removal process was investigated. The rapid decolorisation was related to fungal growth and biosorption rather than biodegradation as neither carbon nor nitrogen limitation, nor Mn2+ addition, triggered the decolorisation process. Low pH (pH 3) and increased ionic strength (up to 50 g L‒1 added NaCl) led to greater specific removal (NOM/unit biomass), probably due to increased electrostatic bonding between the humic material and the biomass. Adsorption of NOM with viable and inactivated (autoclaved or by sodium azide) fungal pellets occurred within 24 hours and the colour removal depended on the viability, method of inactivation and pH. Colour removal by viable pellets was higher under the same conditions, and this, combined with desorption data, confirmed that fungal metabolic activity was important in the decolorisation process. Overall, removals of up to 40–50% NOM from solution were obtained. Of this, removal by adsorption was estimated as 60–70%, half of which was physicochemical, the other half metabolically-dependent biosorption and bioaccumulation. The remainder was considered to be removed by biodegradation, although some of this may be ascribed to bioaccumulation and metabolically-dependent biosorption.


2021 ◽  
Vol 22 (14) ◽  
pp. 7715
Author(s):  
Grzegorz Czernel ◽  
Dominika Bloch ◽  
Arkadiusz Matwijczuk ◽  
Jolanta Cieśla ◽  
Monika Kędzierska-Matysek ◽  
...  

Silver nanoparticles (AgNPs) were synthesized using aqueous honey solutions with a concentration of 2%, 10%, and 20%—AgNPs-H2, AgNPs-H10, and AgNPs-H20. The reaction was conducted at 35 °C and 70 °C. Additionally, nanoparticles obtained with the citrate method (AgNPs-C), while amphotericin B (AmB) and fluconazole were used as controls. The presence and physicochemical properties of AgNPs was affirmed by analyzing the sample with ultraviolet–visible (UV–Vis) and fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The 20% honey solution caused an inhibition of the synthesis of nanoparticles at 35 °C. The antifungal activity of the AgNPs was evaluated using opportunistic human fungal pathogens Candida albicans and Candida parapsilosis. The antifungal effect was determined by the minimum inhibitory concentration (MIC) and disc diffusion assay. The highest activity in the MIC tests was observed in the AgNPs-H2 variant. AgNPs-H10 and AgNPs-H20 showed no activity or even stimulated fungal growth. The results of the Kirby–Bauer disc diffusion susceptibility test for C. parapsilosis strains indicated stronger antifungal activity of AgNPs-H than fluconazole. The study demonstrated that the antifungal activity of AgNPs is closely related to the concentration of honey used for the synthesis thereof.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 463
Author(s):  
Amal Rabaaoui ◽  
Chiara Dall’Asta ◽  
Laura Righetti ◽  
Antonia Susca ◽  
Antonio Logrieco ◽  
...  

In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues.


Sign in / Sign up

Export Citation Format

Share Document