Evaluation of the Compact Dry VP Method for Screening Raw Seafood for Total Vibrio parahaemolyticus

2009 ◽  
Vol 72 (1) ◽  
pp. 169-173 ◽  
Author(s):  
HIDEMASA KODAKA ◽  
HAJIME TERAMURA ◽  
SHINGO MIZUOCHI ◽  
MIKAKO SAITO ◽  
HIDEAKI MATSUOKA

Compact Dry VP (CDVP) is a ready-to-use method for enumerating Vibrio parahaemolyticus in food. The presterilized plates contain a culture medium comprising peptone, NaCl, bile salts, antibiotics, chromogenic substrates, and polysaccharide gum as a cold water–soluble gelling. After diluting raw seafood samples in a phosphate-buffered saline solution, a 1-ml aliquot was inoculated onto the center of the plate and allowed to diffuse by capillary action. Blue-green colonies forming on the plates were counted after 18 to 20 h of incubation at 35°C. A total of 85 V. parahaemolyticus strains (62 tdh+ strains and 23 tdh− strains) were studied for inclusivity, 81 (95.3 %) of which produced blue-green colonies. When 97 strains (14 strains of Vibrio spp., 33 strains of coliform bacteria, and 50 strains of noncoliform bacteria) were assessed for exclusivity, 10 strains of Vibrio spp. produced non–blue-green colonies, and 87 strains failed to grow. The CDVP and U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA-BAM) methods were compared with the use of four different types of raw seafood that were inoculated with four different V. parahaemolyticus strains. For raw tuna and oysters, the FDA-BAM colony lift method was used, whereas the FDA-BAM most-probable-number method was used for salmon and scallop. The linear correlation coefficients between the CDVP and FDA-BAM methods were 0.99 for fresh raw tuna, 0.95 for fresh raw oysters, 0.95 for frozen raw salmon, and 0.95 for frozen raw scallops. These results suggest that the CDVP method is useful for screening raw seafood for V. parahaemolyticus.

2005 ◽  
Vol 68 (7) ◽  
pp. 1454-1456 ◽  
Author(s):  
YI-CHENG SU ◽  
JINGYUN DUAN ◽  
WEN-HSIN WU

The thiosulfate–citrate–bile salts–sucrose agar (TCBS) used in the most-probable-number method for detecting Vibrio parahaemolyticus cannot differentiate growth of V. parahaemolyticus from Vibrio vulnificus or Vibrio mimicus. This study examined the selectivity and specificity of Bio-Chrome Vibrio medium (BCVM), a chromogenic medium that detects V. parahaemolyticus on the basis of the formation of distinct purple colonies on the medium. A panel consisting of 221 strains of bacteria, including 179 Vibrio spp. and 42 non-Vibrio spp., were examined for their ability to grow and produce colored colonies on BCVM. Growth of Salmonella, Shigella, Escherichia coli, Enterobacter cloacae, Yersinia enterocolitica, and Aeromonas was inhibited by both BCVM and TCBS. All 148 strains of V. parahaemolyticus grew on BCVM, and 145 of them produced purple colonies. The remaining 31 Vibrio spp., except one strain of Vibrio fluvialis, were either unable to grow or produced blue-green or white colonies on BCVM. Bio-Chrome Vibrio medium was capable of differentiating V. parahaemolyticus from other species, including V. vulnificus and V. mimicus. Further studies are needed to evaluate the sensitivity and specificity of BCVM for detecting V. parahaemolyticus in foods.


2006 ◽  
Vol 89 (1) ◽  
pp. 100-114 ◽  
Author(s):  
Hidemasa Kodaka ◽  
Shingo Mizuochi ◽  
Hajime Teramura ◽  
Tadanobu Nirazuka ◽  
David Goins ◽  
...  

Abstract Compact Dry E. coli/Coliform Count (EC) is a ready-to-use test method for the enumeration of Escherichia coli and coliform bacteria in food. The plates are presterilized and contain culture medium and a cold water-soluble gelling agent. The medium should be rehydrated with 1 mL diluted sample inoculated onto the center of the self-diffusible medium, allowing the solution to diffuse by capillary action. The plate can be incubated at 35C for 2024 h and the colonies counted without any further working steps. The Compact Dry EC medium plates were validated as an analysis tool for determining colony-forming units (CFU) of E. coli and coliform bacteria from a variety of raw meats using 5 different types of raw meats. The performance tests were conducted at 35C. In all studies performed, no apparent differences were observed between the Compact Dry ECmethod and theAOAC Official Method 966.24 results. For the accuracy claim (n = 75), a correlation factor of r2 = 0.93 (E. coli) and r2 = 0.93 (coliform bacteria) could be assigned, as stated in the application for Performance-Tested MethodSM.


1998 ◽  
Vol 61 (4) ◽  
pp. 444-449 ◽  
Author(s):  
D. E. TOWNSEND ◽  
R. L. IRVING ◽  
A. NAQUI

SimPlate for coliforms and Escherichia coli (CEc) is a new method for the detection and quantification of coliforms and E. coli in food. Internal validation of the method was carried out at IDEXX Laboratories (Westbrook, ME) with 180 food samples representing a variety of different food matrices and compared against three-tube MPN (most probable number), VRBA (violet red bile agar) + MUG, and Petrifilm (E. coli count) methods. SimPlate CEc was highly correlated with each of these methods for the quantification of coliform bacteria (r ≥ 0.90). An insignificant number of food samples were found to contain E. coli; therefore, no meaningful correlation data could be generated. Four hundred forty-four additional food samples were tested at five collaborating laboratories for the presence of coliforms and E. coli using SimPlate CEc and either VRBA + MUG or Petrifilm (E. coli count). Regression analysis of data from SimPlate for CEc versus Petrifilm E. coli count plates generated correlation coefficients (r) of at least 0.89 for total coliforms and at least 0.90 for generic E. coli. Correlation coefficients between SimPlate for CEc and VRBA + MUG data were at least 0.90 for coliforms and at least 0.86 for E. coli. SimPlate for CEc demonstrated better recovery of E. coli than Petrifilm when high populations of bacteria were present. E. coli was not detected in 20 of 50 (40%) raw milk samples tested by the Petrifilm method due to the presence of interfering coliform and noncoliform bacteria. It is concluded that SimPlate for CEc is a suitable alternative for determining numbers of coliform bacteria and E. coli in food.


2015 ◽  
Vol 78 (7) ◽  
pp. 1375-1379 ◽  
Author(s):  
KERI ANN LYDON ◽  
MELISSA FARRELL-EVANS ◽  
JESSICA L. JONES

Raw oyster consumption is the most common route of exposure for Vibrio spp. infections in humans. Vibriosis has been increasing steadily in the United States despite efforts to reduce the incidence of the disease. Research has demonstrated that ice is effective in reducing postharvest Vibrio spp. growth in oysters but has raised concerns of possible contamination of oyster meat by filth (as indicated by the presence of fecal coliform bacteria or Clostridium perfringens). This study examined the use of ice slurries (<4.5°C) to reduce Vibrio growth. Ice slurries showed rapid internal cooling of oysters, from 23.9°C (75°F) to 10°C (50°F) within 12 min. The initial bacterial loads in the ice slurry waters were near the limits of detection. Following repeated dipping of oysters into ice slurries, water samples exhibited significant (P < 0.05) increases in median levels of fecal coliforms (9.5 most probable number [MPN]/100 ml), C. perfringens (280 MPN/100 ml), Vibrio vulnificus (11,250 MPN/ml), and total Vibrio parahaemolyticus (3,900 MPN/ml). The microbial load in oyster meat, however, was unchanged after 15 min of submergence, with no significant differences (P < 0.05) in levels of filth indicator (range, 250 to 720 MPN/100 g) or Vibrio spp. (range, 9,000 to 20,000 MPN/g) bacteria. These results support the use of ice slurries as a postharvest application for rapid cooling of oysters to minimize Vibrio growth.


2006 ◽  
Vol 89 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Hidemasa Kodaka ◽  
Hajime Teramura ◽  
Tadanobu Nirazuka ◽  
Shingo Mizuochi ◽  
David Goins ◽  
...  

Abstract Compact Dry CF is a ready-to-use test method for the enumeration of coliform bacteria in food. The plates are presterilized and contain culture medium and a cold water-soluble gelling agent. The medium should be rehydrated with 1 mL diluted sample inoculated into the center of the self-diffusible medium, allowing the solution to diffuse by capillary action. The plate can be incubated at 35C for 2024 h and the colonies counted without any further working steps. The Compact Dry CF medium plates were validated with 5 different raw meats. The performance tests were conducted at 35C. In all studies performed, no apparent differences were observed between the Compact Dry CF method and the AOAC Official Method 966.24 results. For the accuracy claim (n = 75), a correlation factor of r2 = 0.91 (coliform) could be assigned, as stated in the application for Performance-Tested MethodSM. No significant variations in coliform bacterial counts were observed with different production lots or plates of diverse storage age by the quality consistency and storage robustness studies.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Wanda Aulya ◽  
Fadhliani Fadhliani ◽  
Vivi Mardina

Water is the main source for life and also the most severe substance caused by pollution. The mandatory parameters for determining microbiological quality of drinking water are total non-fecal Coliform bacteria and Coliform fecal (Escherichia coli). Coliform bacteria are a group of microorganisms commonly used as indicators, where these bacteria can be a signal to determine whether a water source has been contaminated by bacteria or not, while fecal Coliform bacteria are indicator bacteria polluting pathogenic bacteria originating from human feces and warm-blooded animals (mammals) . The water inspection method in this study uses the MPN (Most Probable Number) method which consists of 3 tests, namely, the presumption test, the affirmation test, and the reinforcement test. The results showed that of 15 drinking water samples 8 samples were tested positive for Coliform bacteria with the highest total bacterial value of sample number 1, 15 (210/100 ml), while 7 other samples were negative. From 8 positive Coliform samples only 1 sample was stated to be negative fecal Coliform bacteria and 7 other samples were positive for Coliform fecal bacteria with the highest total bacterial value of sample number 1 (210/100 ml).


1984 ◽  
Vol 47 (10) ◽  
pp. 753-755 ◽  
Author(s):  
R. E. GINN ◽  
V. S. PACKARD ◽  
T. L. FOX

The 3M Company has developed a sample-ready system (Petrifilm ™ SM) for enumerating bacteria in milk and other food products. The testing unit consists of Standard Methods culture medium coated onto a base film and overlaid with a second film coated with a cold-water-soluble gelling agent and tetrazolium indicator dye. As such, the system is ready to accept samples of product. A pipette or 0.001-ml plate loop continuous pipetting syringe can be used for applying samples. In this study, both methods of sample addition were used and results compared with those of the Standard Plate Count (SPC) and standard Plate Loop (PL) methods for determining bacteria numbers in raw milk. In total, 108 samples were analyzed in duplicate by each of the four methods. The correlation coefficients (r) between the 3M-SPC and SPC, 3M-PL and PL, 3M-PL and SPC and PL and SPC were 0.946, 0.935, 0.941, and 0.974, respectively. Repeatability, as measured by mean log10 variance for duplicate determinations, was essentially the same for the four methods, and in all instances less than 0.005. The mean log10 differences between the SPC and 3M-SPC, and SPC and 3M-PL were, respectively, −0.177 and −0.168. The preceding statistical criteria suggest the Petrifilm™ SM method to be a suitable alternative to the SPC or the PL procedure.


2019 ◽  
Vol 2 (2) ◽  
pp. a13-19
Author(s):  
ELEXSON NILLIAN ◽  
AMIZA NUR ◽  
DIYANA NUR ◽  
AMIRAH ZAKIRAH ◽  
GRACE BEBEY

Contamination of drinks with E. coli O157:H7 served in food premises such as restaurants can cause haemorrhagic colitis and haemolytic uremic syndrome to humans. The presence or absence of faecal pathogen was demonstrated using coliform group as indicator microorganisms. Therefore, this study was conducted to detect the presence of E. coli O157:H7 in drinking water from food restaurant premise in Kota Samarahan and Kuching to ensure safe and potable drinking water is served to the consumer. A total of thirty (n=30) drink samples including six types of each of the samples are cold plain water, iced tea, iced milo, syrup and iced milk tea. Most Probable Number (MPN) procedure was used in this study to enumerate the MPN values of coliform bacteria in each drink collected. A total of 53.33% (16/30) of the drink samples showed positive E. coli detection. Then, the PCR assay showed 6.25% (one out of 16 isolates) samples were positive and carried stx1 gene produced by E. coli O157:H7 in iced milo sample types. This study showed the drinks collected from food premises was contaminated with faecal contamination, which was not safe to drink by the consumer. Therefore, preventive actions should be taken to prevent foodborne illness outbreak in future


2019 ◽  
Vol 6 (1) ◽  
pp. 61
Author(s):  
Nenengsih Verawati ◽  
Nur Aida ◽  
Ridha Aufa

Tofu is a high-protein soy-based food ingredient that is widely consumed in Indonesia. Tofu producers in Delta Pawan Subdistrict are dominated by small and medium-sized entrepreneurs whose hygiene and sanitation aspects in production activities are very under-taken. This study aims to determine the presence of Coliform and Salmonella Sp bacteria on tofu produced in Delta Pawan sub-district, Ketapang, West Kalimantan and compare with SNI01-3142-1998. The method used to detect the presence of Coliform bacteria in this study uses the Most Probable Number (MPN) method, which consists of estimator and confirmatory tests using Lactosa Broth (LB) media for the Brilliant Green Lactose Broth (BGLB) assay test for confirmation . Whereas to detect the amount of Salmonella Sp using the method of Total Plate Count (TPC) with selective media Salmonella Shigella Agar (SSA). The results of Coliform analysis in both industries found Coliform MPN values ​​of more than 2400 AMP / g samples, which indicated that they did not meet the standards set by SNI. While the results of the analysis of Salmonella Sp obtained positive results, so the two industries did not meet food safety standards.


2015 ◽  
Vol 81 (7) ◽  
pp. 2320-2327 ◽  
Author(s):  
C. D. Cruz ◽  
D. Hedderley ◽  
G. C. Fletcher

ABSTRACTThe food-borne pathogenVibrio parahaemolyticushas been reported as being present in New Zealand (NZ) seawaters, but there have been no reported outbreaks of food-borne infection from commercially grown NZ seafood. Our study determined the current incidence ofV. parahaemolyticusin NZ oysters and Greenshell mussels and the prevalence ofV. parahaemolyticustdhandtrhstrains. Pacific (235) and dredge (21) oyster samples and mussel samples (55) were obtained from commercial shellfish-growing areas between December 2009 and June 2012. TotalV. parahaemolyticusnumbers and the presence of pathogenic genestdhandtrhwere determined using the FDA most-probable-number (MPN) method and confirmed using PCR analysis. In samples from the North Island of NZ,V. parahaemolyticuswas detected in 81% of Pacific oysters and 34% of mussel samples, while the numbers ofV. parahaemolyticustdhandtrhstrains were low, with just 3/215 Pacific oyster samples carrying thetdhgene.V. parahaemolyticusorganisms carryingtdhandtrhwere not detected in South Island samples, andV. parahaemolyticuswas detected in just 1/21 dredge oyster and 2/16 mussel samples. Numbers ofV. parahaemolyticusorganisms increased when seawater temperatures were high, the season when most commercial shellfish-growing areas are not harvested. The numbers ofV. parahaemolyticusorganisms in samples exceeded 1,000 MPN/g only when the seawater temperatures exceeded 19°C, so this environmental parameter could be used as a trigger warning of potential hazard. There is some evidence that the totalV. parahaemolyticusnumbers increased compared with those reported from a previous 1981 to 1984 study, but the analytical methods differed significantly.


Sign in / Sign up

Export Citation Format

Share Document