Escherichia coli O157:H7 Populations in Ruminants Can Be Reduced by Orange Peel Product Feeding†

2011 ◽  
Vol 74 (11) ◽  
pp. 1917-1921 ◽  
Author(s):  
TODD R. CALLAWAY ◽  
JEFFERY A. CARROLL ◽  
JOHN D. ARTHINGTON ◽  
TOM S. EDRINGTON ◽  
MICHELLE L. ROSSMAN ◽  
...  

Foodborne pathogenic bacteria such as Escherichia coli O157:H7 are threats to the safety of beef. Citrus peel and dried orange pulp are by-products from citrus juice production that have natural antimicrobial effects and are often incorporated into least-cost ration formulations for beef and dairy cattle. This study was designed to determine if orange peel and pulp affected E. coli O157:H7 populations in vivo. Sheep (n = 24) were fed a cracked corn grain–based diet that was supplemented with a 50-50 mixture of dried orange pellet and fresh orange peel to achieve a final concentration (dry matter basis, wt/wt) of 0, 5, or 10% pelleted orange peel (OP) for 10 days. Sheep were artificially inoculated with 1010 CFU of E. coli O157:H7 by oral dosing. Fecal shedding of E. coli O157:H7 was measured daily for 5 days after inoculation, after which all animals were humanely euthanized. At 96 h postinoculation, E. coli O157:H7 shedding was reduced (P < 0.05) in sheep fed 10% OP. Populations of inoculated E. coli O157:H7 were reduced by OP treatment throughout the gastrointestinal tract; however, this reduction reached significant levels in the rumen (P < 0.05) of sheep fed 10% OP diets. Cecal and rectal populations of E. coli O157:H7 were reduced (P <0.05) by inclusion of both 5 and 10% OP diets. Our results demonstrate that orange peel products can be used as a preharvest intervention strategy as part of an integrated pathogen reduction scheme.

2010 ◽  
Vol 76 (21) ◽  
pp. 7210-7216 ◽  
Author(s):  
Lucia Rivas ◽  
Brid Coffey ◽  
Olivia McAuliffe ◽  
Mary J. McDonnell ◽  
Catherine M. Burgess ◽  
...  

ABSTRACT This study investigated the effect of bacteriophages (phages) e11/2 and e4/1c against Escherichia coli O157:H7 in an ex vivo rumen model and in cattle in vivo. In the ex vivo rumen model, samples were inoculated with either 103 or 106 CFU/ml inoculum of E. coli O157:H7 and challenged separately with each bacteriophage. In the presence of phage e11/2, the numbers of E. coli O157:H7 bacteria were significantly (P < 0.05) reduced to below the limit of detection within 1 h. Phage e4/1c significantly (P < 0.05) reduced E. coli O157:H7 numbers within 2 h of incubation, but the number of surviving E. coli O157:H7 bacteria then remained unchanged over a further 22-h incubation period. The ability of a phage cocktail of e11/2 and e4/1c to reduce the fecal shedding of E. coli O157:H7 in experimentally inoculated cattle was then investigated in two cattle trials. Cattle (yearlings, n = 20 for trial one; adult fistulated cattle, n = 2 for trial two) were orally inoculated with 1010 CFU of E. coli O157:H7. Animals (n = 10 for trial one; n = 1 for trial two) were dosed daily with a bacteriophage cocktail of 1011 PFU for 3 days postinoculation. E. coli O157:H7 and phage numbers in fecal and/or rumen samples were determined over 7 days postinoculation. E. coli O157:H7 numbers rapidly declined in all animals within 24 to 48 h; however, there was no significant difference (P > 0.05) between the numbers of E. coli O157:H7 bacteria shed by the phage-treated or control animals. Phages were recovered from the rumen but not from the feces of the adult fistulated animal in trial two but were recovered from the feces of the yearling animals in trial one. While the results from the rumen model suggest that phages are effective in the rumen, further research is required to improve the antimicrobial effectiveness of phages for the elimination of E. coli O157:H7 in vivo.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2015 ◽  
Vol 78 (9) ◽  
pp. 1738-1744 ◽  
Author(s):  
MICHAEL KNOWLES ◽  
DOMINIC LAMBERT ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER ◽  
BURTON W. BLAIS

Control strains of bacterial pathogens such as Escherichia coli O157:H7 are commonly processed in parallel with test samples in food microbiology laboratories as a quality control measure to assure the satisfactory performance of materials used in the analytical procedure. Before positive findings can be reported for risk management purposes, analysts must have a means of verifying that pathogenic bacteria (e.g., E. coli O157:H7) recovered from test samples are not due to inadvertent contamination with the control strain routinely handled in the laboratory environment. Here, we report on the application of an in-house bioinformatic pipeline for the identification of unique genomic signature sequences in the development of specific oligonucleotide primers enabling the identification of a common positive control strain, E. coli O157:H7 (ATCC 35150), using a simple PCR procedure.


2004 ◽  
Vol 67 (4) ◽  
pp. 672-678 ◽  
Author(s):  
S. J. BACH ◽  
T. A. McALLISTER ◽  
G. J. MEARS ◽  
K. S. SCHWARTZKOPF-GENSWEIN

The effects of weaning and transport on fecal shedding of Escherichia coli and on E. coli O157:H7 were investigated using 80 Angus and 94 Charolais range steer calves blocked by breed and assigned to four treatments. The calves were or were not preconditioned before transport on commercial cattle liner to the feedlot via long (15 h) or short (3 h) hauling duration, yielding preconditioned long haul (P-L; n = 44), preconditioned short haul (P-S; n = 44), nonpreconditioned long haul (NP-L; n = 43), and nonpreconditioned short haul (NP-S; n = 43). Preconditioned calves were vaccinated and weaned 29 and 13 days, respectively, before transport. Nonpreconditioned calves were weaned 1 day before long or short hauling, penned for 24 h and hauled again for 2 h, and vaccinated on arrival at the feedlot. Fecal samples were collected from calves while on pasture, at weaning, at loading for transport, on arrival at the feedlot, twice in the first week, and on days 7, 14, 21, and 28 for enumeration of total E. coli (biotype 1) and detection of E. coli O157:H7. No calves were positive for E. coli O157:H7 before transport. Following transport, more (P &lt; 0.005) NP-L calves (6 of 43) tested positive for E. coli O157:H7 than did P-L (1 of 44), NP-S (1 of 43), or P-S (0 of 44) calves, and on days 0, 1, 7, and 21, their levels of shedding of E. coli were higher (P &lt; 0.005). The calves' susceptibility to infection from the environment (possibly the holding facilities or feedlot pens) was likely elevated by the stresses of weaning, transport, and relocation. Lack of preconditioning and long periods of transport (NP-L) increased fecal shedding of E. coli and E. coli O157:H7. Preconditioning may serve to reduce E. coli O157:H7 shedding by range calves on arrival at the feedlot.


2007 ◽  
Vol 70 (3) ◽  
pp. 543-550 ◽  
Author(s):  
BYENG R. MIN ◽  
WILLIAM E. PINCHAK ◽  
ROBIN C. ANDERSON ◽  
TODD R. CALLAWAY

The effect of commercially available chestnut and mimosa tannins in vitro (experiment 1) or in vivo (experiment 2) on the growth or recovery of Escherichia coli O157:H7 or generic fecal E. coli was evaluated. In experiment 1, the mean growth rate of E. coli O157:H7, determined via the measurement of optical density at 600 nm during anaerobic culture in tryptic soy broth at 37°C, was reduced (P &lt; 0.05) with as little as 400 μg of either tannin extract per ml of culture fluid. The addition of 200, 400, 600, 800, and 1,200 μg of tannins per ml significantly (P &lt; 0.01) reduced the specific bacterial growth rate when compared with the nontannin control. The specific growth rate decreased with increasing dose levels up to 800 μg of tannins per ml. Bacterial growth inhibition effects in chestnut tannins were less pronounced than in mimosa tannins. Chestnut tannin extract addition ranged from 0 to 1,200 μg/ml, and a linear effect (P &lt; 0.05) was observed in cultures incubated for 6 h against the recovery of viable cells, determined via the plating of each strain onto MacConkey agar, of E. coli O157:H7 strains 933 and 86-24, but not against strain 6058. Similar tests with mimosa tannin extract showed a linear effect (P &lt; 0.05) against the recovery of E. coli O157:H7 strain 933 only. The bactericidal effect observed in cultures incubated for 24 h with the tannin preparations was similar, although it was less than that observed from cultures incubated for 6 h. When chestnut tannins (15 g of tannins per day) were infused intraruminally to steers fed a Bermuda grass hay diet in experiment 2, fecal E. coli shedding was lower on days 3 (P &lt; 0.03), 12 (P = 0.08), and 15 (P &lt; 0.001) when compared with animals that were fed a similar diet without tannin supplementation. It was concluded that dietary levels and sources of tannins potentially reduce the shedding of E. coli from the gastrointestinal tract.


2006 ◽  
Vol 69 (5) ◽  
pp. 1154-1158 ◽  
Author(s):  
MARGARET L. KHAITSA ◽  
MARC L. BAUER ◽  
GREGORY P. LARDY ◽  
DAWN K. DOETKOTT ◽  
REDEMPTA B. KEGODE ◽  
...  

Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157: H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P &lt; 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.


2003 ◽  
Vol 66 (9) ◽  
pp. 1637-1641 ◽  
Author(s):  
MARA C. L. NOGUEIRA ◽  
OMAR A. OYARZÁBAL ◽  
DAVID E. GOMBAS

The production of thermally concentrated fruit juices uses temperatures high enough to achieve at least a 5-log reduction of pathogenic bacteria that can occur in raw juice. However, the transportation and storage of concentrates at low temperatures prior to final packaging is a common practice in the juice industry and introduces a potential risk for postconcentration contamination with pathogenic bacteria. The present study was undertaken to evaluate the likelihood of Escherichia coli O157: H7, Listeria monocytogenes and Salmonella surviving in cranberry, lemon, and lime juice concentrates at or above temperatures commonly used for transportation or storage of these concentrates. This study demonstrates that cranberry, lemon, and lime juice concentrates possess intrinsic antimicrobial properties that will eliminate these bacterial pathogens in the event of postconcentration recontamination. Bacterial inactivation was demonstrated under all conditions; at least 5-log Salmonella inactivation was consistently demonstrated at −23°C (−10°F), at least 5-log E. coli O157:H7 inactivation was consistently demonstrated at −11°C (12°F), and at least 5-log L. monocytogenes inactivation was consistently demonstrated at 0°C (32°F).


2010 ◽  
Vol 73 (2) ◽  
pp. 212-220 ◽  
Author(s):  
ROWAIDA K. KHALIL ◽  
JOSEPH F. FRANK

Recent foodborne illness outbreaks associated with the consumption of leafy green produce indicates a need for additional information on the behavior of pathogenic bacteria on these products. Previous research indicates that pathogen growth and survival is enhanced by leaf damage. The objective of this study was to compare the behavior of Escherichia coli O157:H7 on damaged leaves of baby Romaine lettuce, spinach, cilantro, and parsley stored at three abusive temperatures (8, 12, and 15°C). The damaged portions of leaves were inoculated with approximately 105 CFU E. coli O157:H7 per leaf. The pathogen grew on damaged spinach leaves held for 3 days at 8 and 12°C (P &lt; 0.05), with the population increasing by 1.18 and 2.08 log CFU per leaf, respectively. E. coli O157:H7 did not grow on damaged Romaine leaves at 8 or 12°C, but growth was observed after 8 h of storage at 15°C, with an increase of less than 1.0 log. Growth of E. coli O157:H7 on Romaine lettuce held at 8 or 12°C was enhanced when inocula were suspended in 0.05% ascorbic acid, indicating the possibility of inhibition by oxidation reactions associated with tissue damage. Damaged cilantro and Italian parsley leaves held at 8°C for 4 days did not support the growth of E. coli O157:H7. Behavior of the pathogen in leaf extracts differed from behavior on the damaged tissue. This study provides evidence that the damaged portion of a leafy green is a distinct growth niche that elicits different microbial responses in the various types of leafy greens.


2001 ◽  
Vol 64 (10) ◽  
pp. 1489-1495 ◽  
Author(s):  
SARAH L. HOLLIDAY ◽  
ALAN J. SCOUTEN ◽  
LARRY R. BEUCHAT

Alfalfa seeds are sometimes subjected to a scarification treatment to enhance water uptake, which results in more rapid and uniform germination during sprout production. It has been hypothesized that this mechanical abrasion treatment diminishes the efficacy of chemical treatments used to kill or remove pathogenic bacteria from seeds. A study was done to compare the effectiveness of chlorine (20,000 ppm), H2O2 (8%), Ca(OH)2 (1%), Ca(OH)2 (1%) plus Tween 80 (1%), and Ca(OH)2 (1%) plus Span 20 (1%) treatments in killing Salmonella and Escherichia coli O157:H7 inoculated onto control, scarified, and polished alfalfa seeds obtained from two suppliers. The influence of the presence of organic material in the inoculum carrier on the efficacy of sanitizers was investigated. Overall, treatment with 1% Ca(OH)2 was the most effective in reducing populations of the pathogens. Reduction in populations of pathogens on seeds obtained from supplier 1 indicate that chemical treatments are less efficacious in eliminating the pathogens on scarified seeds compared to control seeds. However, the effectiveness of chemical treatment in removing Salmonella and E. coli O157:H7 from seeds obtained from supplier 2 was not markedly affected by scarification or polishing. The presence of organic material in the inoculum carrier did not have a marked influence on the efficacy of chemicals in reducing populations of test pathogens. Additional lots of control, scarified, and polished alfalfa seeds of additional varieties need to be tested before conclusions can be drawn concerning the impact of mechanical abrasion on the efficacy of chemical treatment in removing or killing Salmonella and E. coli O157:H7.


2004 ◽  
Vol 67 (5) ◽  
pp. 1014-1016 ◽  
Author(s):  
M. J. CHO ◽  
R. W. BUESCHER ◽  
M. JOHNSON ◽  
M. JANES

The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37° C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.


Sign in / Sign up

Export Citation Format

Share Document