Comparisons of Non-thermal Decontamination Methods to Improve the Safety for Raw Beef Consumption

Author(s):  
Sangeun Park ◽  
Eunyoung Park ◽  
Yohan Yoon

The object of this study was to examine non-thermal treatments to reduce foodborne pathogens in raw beef. Foodborne-illness pathogens were inoculated in the raw beef. Death rates of foodborne illness pathogens were evaluated by non-thermal decontamination methods(high pressure processing at 500MPa[HPP] for 2min, 5min, and 7min; UV LED radiation at 405nm[UV LED] for 2h, 6h, and 24h; hypochlorous acid water at 100ppm[HAW] for 1min, 3min, and 5min; 2.5% lactic acid[LA] for 1min, 3min, and 5min; modified atmosphere that replaced O2 to CO2 [MAP] for 24h and 48​​h; bio-gel[BG] application for 24h and 48h. Quality characteristics were measured after applying the practical non-thermal decontamination methods. After the treatment of HPP for 7min, inactivity rates were 4.4-6.7Log CFU/g for E. coli, Salmonella, and L. monocytogenes and 1.7Log CFU/g for S. aureus (p <0.05). After the treatment with UV LED for 24h, the reduced cell counts were 0.5, 0.7, and 0.3Log CFU/g for E. coli , Salmonella , and S. aureus, respectively(p <0.05), but no significant reduction for L. monocytogenes. When the beef was treated with HAW was treated for 5min, 0.6Log CFU/g of E. coli, 0.5Log CFU/g of Salmonella, 0.4Log CFU/g of S. aureus , and 0.5Log CFU/g of L. monocytogenes were inactivated. After the beef was treated with LA for 5min, 1.8Log CFU/g of E. coli, 3.0Log CFU/g of Salmonella, 1.3Log CFU/g of S. aureus, and 1.9Log CFU/g of L. monocytogenes were inactivated. MAP for 48h caused the inactivation of 0.3Log CFU/g of E. coli, 0.1Log CFU/g of Salmonella. After treatment of BG for 48h, 0.3Log CFU/g of E. coli and 0.4Log CFU/g of Salmonella were significantly decreased(p <0.05). HPP cooked the beef after 2min of treatment. HAW and BG changed the surface color of the beef, LA reduced the pH of beef (p<0.05). However, UV LED did not cause any changes in the beef quality properties. These results indicates that UV LED can improve the food safety of raw beef.

2004 ◽  
Vol 67 (9) ◽  
pp. 1953-1956 ◽  
Author(s):  
S. KIM ◽  
D. Y. C. FUNG

Antimicrobial activity of water-soluble arrowroot tea extract was evaluated against Escherichia coli O157:H7, Salmonella enterica Serotype Enteritidis, Listeria monocytogenes, and Staphylococcus aureus in ground beef and mushroom soup. The concentrations of arrowroot tea used were 0, 3, and 6% (wt/wt) for ground beef and 0, 1, 5, and 10% (wt/vol) for mushroom soup. Samples without tea extract were considered controls. Each sample was stored for 0, 1, 3, 5, and 7 days at 7°C for ground beef and for 0, 1, 3, and 5 days at 35°C for mushroom soup. On each sampling time, proper dilutions were spread plated on each pathogen-specific agar. Viable cell counts of each pathogen were performed after incubation at 35°C for 24 to 48 h. For ground beef, Salmonella Enteritidis and L. monocytogenes were slightly suppressed by approximately 1.5 log, compared with the control, on day 7 at 3 and 6% arrowroot tea treatment. For mushroom soup, all test pathogens were suppressed by 6.5, 4.7, 3.4, and 4.3 log at 5% and 6.0, 4.7, 5.0, and 4.3 log at 10% against E. coli O157:H7, Salmonella Enteritidis, L. monocytogenes, and S. aureus, respectively, compared with the control on day 5. Mushroom soup with 1% arrowroot tea also showed 2.3- and 2.7-log growth suppression of Salmonella Enteritidis and S. aureus, respectively, compared with the control on day 5. This study showed that the use of arrowroot tea would effectively inhibit the microbial growth of both gram-negative and gram-positive foodborne pathogens in various foods, especially liquid foods.


Author(s):  
Afsal S. ◽  
Latha C. ◽  
Sethulekshmi C. ◽  
Binsy M. ◽  
Beena C. J. ◽  
...  

Foodborne pathogens like E. coli are considered as the major causes of foodborne illness in humans worldwide. The present study was undertaken to determine the occurrence of E. coli in cloacal samples of broiler chicken from Kollam and Kottayam districts. The occurrence of E. coli in cloacal samples from broiler chicken was 76.5 per cent from Kollam and 79 per cent from Kottayam through culture techniques. Out of the total 400 cloacal swab samples collected from broiler chicken, 77.8 per cent were positive for E. coli. The samples which were subjected to conventional culture techniques were further analysed for PCR confirmation. The study revealed that, 56.5 and 67 per cent samples were positive for E. coli from Kollam and Kottayam, respectively. An overall occurrence of 61.8 per cent out of 400 samples were confirmed for E. coli by PCR. One Health approach can be used as a suitable tool to combat the foodborne zoonotic diseases, since it is an integrated, multidisciplinary, holistic approach. Proper implementation of biosecurity measures in farms is mandatory to control foodborne zoonotic diseases.


2020 ◽  
Author(s):  
Ilhan Cem Duru ◽  
Margarita Andreevskaya ◽  
Pia Laine ◽  
Tone Mari Rode ◽  
Anne Ylinen ◽  
...  

Abstract Background: High pressure processing (HPP; i.e. 100 - 600 MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is related to their genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference type strains, to pressure treatments with 400 and 600 MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance.Results: None of the tested strains were tolerant to 600 MPa. A reduction of more than 5 log10 was observed for all strains after 1 minute 600 MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400 MPa for 1 minute and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains.Conclusions: L. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.


2020 ◽  
Vol 122 (12) ◽  
pp. 3969-3979 ◽  
Author(s):  
Rodrigo Rodrigues Petrus ◽  
John Joseph Churey ◽  
Randy William Worobo

PurposeHigh-acid liquid foods are a substrate in which foodborne pathogens can maintain their viability. In this research an experimental design was conducted to optimize the parameters for high pressure processing (HPP) of apple juice (pH 3.76).Design/methodology/approachJuice was inoculated with cocktails of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes. Pressures ranging from 139 to 561 MPa and dwell times between 39 and 181 s were challenged.FindingsPressures above 400 MPa achieved a greater than 5-log reduction in all pathogen cocktails regardless of the dwell time. L. monocytogenes was more sensitive to HPP at a pressure of 350 MPa and dwell times equal to or beyond 110 s. E. coli O157:H7 and S. enterica exhibited similar resistance; the number of log reductions in the central point (350 MPa/110 s) ranged from 2.2 to 3.7. The first-order mathematical model better fitted experimental data for E. coli O157:H7 and S. enterica. In regard to L. monocytogenes, the second-order model better fitted this pathogen's reduction.Practical implicationsFruit juices are usually high pressure processed at approximately 600 MPa. For pathogenic reduction, the use of milder parameters may save energy and maintenance costs. The results herein exhibited could assist the apple juice industry with more effective applications of HPP.Originality/valueThe findings of this study demonstrate that relatively moderate pressures can be successfully used to assure the safety of apple juice.


2003 ◽  
Vol 66 (9) ◽  
pp. 1604-1610 ◽  
Author(s):  
N. H. KWON ◽  
S. H. KIM ◽  
J. Y. KIM ◽  
J. Y. LIM ◽  
J. M. KIM ◽  
...  

An efficacy test of GC-100X, a noncorrosive alkaline ionic fluid (pH 12) composed of free radicals and supplemented with xylitol, was carried out against six major foodborne pathogens—Staphylococcus aureus FRI 913, Salmonella enterica serovar Enteritidis ATCC 13076, S. enterica serovar Typhimurium DT104 Korean isolate, Vibrio parahaemolyticus ATCC 17803, Escherichia coli O157:H7 ATCC 43894, and Pseudomonas aeruginosa KCTC 1637—at three different temperatures (4, 25, and 36°C) with or without organic load (2% yeast extract). Results revealed a more than 4-log10 (CFU/ml) reduction (1.0 × 104 CFU/ml reduction) against all pathogens reacted at 37°C for 3 h in the absence of organic material. GC-100X solution diluted with an equal volume of distilled or standard hard water (300 ppm CaCO3) showed effective bactericidal activity, particularly against gram-negative bacteria. Washing efficacy of GC-100X solution was compared against E. coli O157:H7 on cherry tomato surfaces with those of a commercially used detergent and chlorine water (100 ppm). Viable cell counts of E. coli O157:H7 that had penetrated to the cores of tomatoes after sanitizing treatment revealed that GC-100X stock and its 5% diluted solutions had similar washing effects to 100-ppm chlorine water and were more effective than the other kitchen detergent. These results indicate that GC-100X has good bactericidal and sanitizing activities and is useful as a new sanitizer for food safety and kitchen hygiene.


EDIS ◽  
2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Bruna Bertoldi ◽  
Susanna Richardson ◽  
Renee Goodrich Schneider ◽  
Ploy Kurdmongkolthan ◽  
Keith R. Schneider

This 7-page fact sheet is one in a series of fact sheets discussing common foodborne pathogens of interest to food handlers, processors, and retailers. It covers the characteristics of, and symptoms caused by, the bacterium E. coli (particularly the “big six” strains), and also details how to minimize the risk of spreading or contracting an E. coli infection. Written by Bruna Bertoldi, Susanna Richardson, Renee Goodrich-Schneider, Ploy Kurdmongkoltham, and Keith R. Schneider and published by the UF/IFAS Department of Food Science and Human Nutrition, January 2018. http://edis.ifas.ufl.edu/fs233


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 778A-778
Author(s):  
Guochen Yang* ◽  
Salam A. Ibrahim ◽  
Carl E. Niedziela

This study investigated antimicrobial effects of guava products on the survival and growth of Escherichia coli O157:H7 in liquid medium. Seven strains of E. coli O157:H7 (944, 380, E0019, F4546, H1730, Cider, 9727) were tested. These strains were maintained in BHI broth. Guava fruits were sliced into small pieces and blended using a blender. Guava juice and leaves were then extracted using three solvents: water, methanol and hexane. Fruit extracts were dissolved in 10 ml BHI broth tubes to make a fruit solution of 5% (w/v). E. coli O157:H7 was inoculated into fruit solutions at 2 log cfu/mL. After incubation at 37 °C for 24 h, samples were serially diluted 10 folds. The proper diluent was spread-plated on TSA in duplicate. After incubation at 35 °C for 24 h, viable cell counts were obtained. The experiment was replicated three times in a randomized complete-block design. Results demonstrated that guava products (fruit, juice, and leaf extracts) significantly reduced survival and growth of the tested foodborne pathogen strains. Water extract showed the highest antimicrobial activity, followed by methanol and hexane. These results indicate guava extracts are a potential antimicrobial agent to ensure food safety.


2015 ◽  
Vol 143 (12) ◽  
pp. 2473-2485 ◽  
Author(s):  
K. L. NEWMAN ◽  
J. S. LEON ◽  
P. A. REBOLLEDO ◽  
E. SCALLAN

SUMMARYFoodborne illness is a major cause of morbidity and loss of productivity in developed nations. Although low socioeconomic status (SES) is generally associated with negative health outcomes, its impact on foodborne illness is poorly understood. We conducted a systematic review to examine the association between SES and laboratory-confirmed illness caused by eight important foodborne pathogens. We completed this systematic review using PubMed for all papers published between 1 January 1980 and 1 January 2013 that measured the association between foodborne illness and SES in highly developed countries and identified 16 studies covering four pathogens. The effect of SES varied across pathogens: the majority of identified studies for Campylobacter, salmonellosis, and E. coli infection showed an association between high SES and illness. The single study of listeriosis showed illness was associated with low SES. A reporting bias by SES could not be excluded. SES should be considered when targeting consumer-level public health interventions for foodborne pathogens.


2004 ◽  
Vol 67 (7) ◽  
pp. 1371-1376 ◽  
Author(s):  
SUN-YOUNG LEE ◽  
MICHAEL COSTELLO ◽  
DONG-HYUN KANG

Aqueous solutions of sodium hypochlorite or hypochlorous acid are typically used to sanitize fresh fruits and vegetables. However, pathogenic organisms occasionally survive aqueous sanitization in sufficient numbers to cause disease outbreaks. Chlorine dioxide (ClO2) gas generated by a dry chemical sachet was tested against foodborne pathogens on lettuce leaves. Lettuce leaves were inoculated with cocktail of three strains each of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium and treated with ClO2 gas for 30 min, 1 h, and 3 h in a model gas cabinet at room temperature (22 ± 2°C). After treatment, surviving cells, including injured cells, were enumerated on appropriate selective agar or using the overlay agar method, respectively. Total ClO2 generated by the gas packs was 4.3, 6.7, and 8.7 mg after 30 min, 1 h, and 3 h of treatment, respectively. Inoculated lettuce leaves exposed to ClO2 gas for 30 min experienced a 3.4-log reduction in E. coli, a 4.3-log reduction in Salmonella Typhimurium, and a 5.0-log reduction in L. monocytogenes when compared with the control. After 1 h, the three pathogens were reduced in number of CFU by 4.4, 5.3, and 5.2 log, respectively. After 3 h, the reductions were 6.9, 5.4, and 5.4 log, respectively. A similar pattern emerged when injured cells were enumerated. The ClO2 gas sachet was effective at killing pathogens on lettuce without deteriorating visual quality. Therefore, this product can be used during storage and transport of lettuce to improve its microbial safety.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 368
Author(s):  
Joy Igbafe ◽  
Agnes Kilonzo-Nthenge ◽  
Samuel N. Nahashon ◽  
Abdullah Ibn Mafiz ◽  
Maureen Nzomo

The probiotic potential and antimicrobial activity of Lactiplantibacillus plantarum, Saccharomyces cerevisiae, and Bifidobacterium longum were investigated against Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes. Selected strains were subjected to different acid levels (pH 2.5–6.0) and bile concentrations (1.0–3.0%). Strains were also evaluated for their antimicrobial activity by agar spot test. The potential probiotic strains tolerated pH 3.5 and above without statistically significant growth reduction. However, at pH 2.5, a significant (p < 0.05) growth reduction occurred after 1 h for L. plantarum (4.32 log CFU/mL) and B. longum (5.71 log CFU/mL). S. cerevisiae maintained steady cell counts for the entire treatment period without a statistically significant (p > 0.05) reduction (0.39 log CFU/mL). The results indicate at 3% bile concertation, 1.86 log CFU/mL reduction was observed for L. plantarum, while S. cerevisiae, and B. longum growth increased by 0.06 and 0.37 log CFU/mL, respectively. L. plantarum and B. longum demonstrated antimicrobial activity against E. coli O157:H7, S. typhimurium and L. monocytogenes. However, S. cerevisiae did not display any inhibition to any of the pathogens. The results indicate that L. plantarum and B. longum present probiotic potential for controlling E. coli O157:H7, S. and L. monocytogenes in poultry.


Sign in / Sign up

Export Citation Format

Share Document