scholarly journals Impacts of Extracts From Styrax officinalis L. on Seedling Growth of Salvia sclarea L.

2021 ◽  
Vol 5 (3) ◽  
pp. 750-756
Author(s):  
Belgin COŞGE ŞENKAL ◽  
Tansu USKUTOĞLU

Many plant species synthesize different biochemical substances from their various organs (leaves, flowers, fruits and roots, etc.). While some of these biochemical substances which are known as allelochemicals have a stimulating effect on the growth and development of other plants, some of them have an inhibitory effect. In this study, the effect of extracts obtained from the Styrax officinalis L., which spreads naturally in the Mediterranean and Aegean regions, on the seedling growth of Salvia sclarea L. were investigated. In the study, the extracts prepared with water at 5% concentration from dry fruit peel and seed coat of S. officinalis, and tap water as control were used. According to the results of this study, it was determined that the fruit peel and seed coat extracts obtained from S. officinalis had a significant inhibitory effect on the emergence of S. sclarea seeds and its seedling growth. The inhibitory effect of fruit peel was higher than that of seed coat.

2010 ◽  
Vol 2 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Ayobola A. Moninuola SAKPERE ◽  
Matthew OZIEGBE ◽  
Idowu Arinola BILESANMI

This study examined the allelopathic effect of Ludwigia decurrens and L. adscendens exudates on germination, seedling growth (hypocotyl and radicle elongation), seedling mortality, vegetative growth and reproductive yield of Corchorus olitorious. Ludwigia decurrens, L. adscedens exudates and tap water (control) were applied to seeds of Corchorus olitorious over a period of 15 days and to 3 weeks old seedling for a period of 4 weeks. Ludwigia exudates had no inhibitory effect on the germination percentage of C. olitorious, but the exudates from the two Ludwigia spp. induced mortality rate of the 15 day old seedlings (control: 5.00%, L. decurrens: 17.50%, L. adscendens: 26.88%) and a significant decrease in seedling elongation (hypocotyl and radicle length) of C. olitorious. For the vegetative growth experiment, results showed that the stem length, stem fresh weight and leaf area of C. olitorious were significantly inhibited during week 6 (P


Crop Science ◽  
1971 ◽  
Vol 11 (5) ◽  
pp. 614-617 ◽  
Author(s):  
G. W. McKee ◽  
A. R. Langille ◽  
W. P. Ditmer ◽  
Pilju Kim Joo

1985 ◽  
Vol 50 (5) ◽  
pp. 1089-1096 ◽  
Author(s):  
Karel Šindelář ◽  
Jan Metyš ◽  
Miroslav Protiva

Substitution reactions of 11-(2-bromoethyl)- and 11-(3-bromopropyl)-6,11-dihydrodibenzo[b,e]thiepin-11-carbonitrile and further of 10-(2-bromoethyl)- and 10-(3-bromopropyl)-10,11-dihydrodibenzo[b,f]thiepin-10-carbonitrile with ethyl 4-phenylpiperidine-4-carboxylate, 4-phenylpiperidin-4-ol, 4-(2-tolyl)piperidin-4-ol, 4-(4-fluorophenyl)piperidin-4-ol, 4-(2-oxobenzimidazolin-1-yl)-piperidine and 1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one afforded the tricyclic piperidinoalkyl nitriles IV-XIII which are cyclic analogues of the antidiarrheal agents diphenoxylate (I) and loperamide (III). Out of the compounds prepared only IV and XI showed a significant inhibitory effect towards diarrhea elicited by intravenously administered serotonin in mice.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ying Liu ◽  
Wenjie Liu ◽  
Ziqiang Yu ◽  
Yan Zhang ◽  
Yinghua Li ◽  
...  

AbstractBromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F‐actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL‐stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


Author(s):  
Weihong Sun ◽  
Guofeng Yang ◽  
Lili Cong ◽  
Juan Sun ◽  
Lichao Ma

Background: Plant allelopathy refers to the release of chemicals from plants or microorganisms into the environment, may have direct or indirect, beneficial or harmful effects on other plants or microorganisms. When plants grow in an unfavorable environment,more allelochemicals will be secreted and the expression of allelopathic effects will increase, giving plants a certain competitive advantage. Hairy vetch is one of the most promising allelopathic crops and the aqueous extract of hairy vetch has an inhibitory effect on the root length and seedling height of grass crops. The current study aimed to study the allelopathic effect of hairy vetch on alfalfa, and exploring an ecological method to remove the root system of alfalfa.Methods: In this experiment, the allelopathic effects of the seeds, stems and leaves, roots extracts and root exudates (0, 3, 6, 9 and 12 mg·mL-1) on the seed germination and seedling growth of alfalfa were evaluated. And the main allelopathic substances from the stem and leaf extract were isolated and identified using high performance liquid chromatography- mass spectrometry (HPLC-MS).Result: The results showed that all of the extracts can inhibit alfalfa seed germination and seedling growth and stem and leaf extract had the strongest inhibitory effect, especially for inhibiting the root growth. A main allelochemical substance, o-coumaric acid, was screened out and the root length of alfalfa was completely inhibited at 1.6 mg·mL-1 of o-coumaric acid. The findings of these experiments show hairy vetch has strong allelopathic effect on alfalfa and o-coumaric acid is a chemical growth inhibitor.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Amal Thebti ◽  
M. A. K. Sanhoury ◽  
H-I. Ouzari ◽  
T. Barhoumi-slimi

The synthesis of new substituted arylphosphoramidates is performed in two steps through phosphorylation of the corresponding alcohols followed by aminolysis. The formation of the desired phosphoramidates depends on the subsequent addition of the two alcohols with the amine being added at the last step. The products were obtained in 58–95% yields. They were characterized mainly by multinuclear (1H, 13C, 31P, and 19F) NMR and IR spectroscopy. In addition, the antimicrobial and antiacetylcholinesterase activities were evaluated. The results showed acetylcholinesterase activity by some compounds, whilst no significant inhibitory effect against the tested bacterial strains has been recorded.


1993 ◽  
Vol 75 (5) ◽  
pp. 2258-2264 ◽  
Author(s):  
K. Sato ◽  
D. E. Timm ◽  
F. Sato ◽  
E. A. Templeton ◽  
D. S. Meletiou ◽  
...  

Passing galvanic current across the skin (known as "tap water iontophoresis" or TWI) inhibits sweating; however, its mechanism of action is unclear. Using improved methods, we confirmed that anodal current has more of an inhibitory effect than cathodal current, water is superior to saline, and the inhibitory effect is a function of the amperage used. To address the importance of current flowing through the pores, a layer of silicone grease was placed on the skin to reduce the shunt pathway across the epidermis. With silicone, total skin conductance decreased 60% without the sweat pores being occluded, swelling of the stratum corneum and collapse of the poral lumen was prevented, and current-induced inhibition of sweating was enhanced, most likely because of an increase in current density in the pores. The pH of anodal water, but not of saline, dropped to 3, whereas that of cathodal water increased to 10 during passage of current through the skin. Acidified anodal water was superior to alkaline water. Sweat glands isolated from TWI-induced anhidrotic palmar skin responded to methacholine in vitro, but the sweat rate and pharmacological sensitivity were slightly lowered. Thus the strong acidity generated by hydrolysis of water in the anodal bath and the further accumulation of H+ in the sweat duct by anodal current may be responsible for TWI-induced inhibition of sweating due to an unknown lesion(s) in the duct or sweat pore. The secretory coil function may also be altered because of exposure to intense acidity during TWI. The importance of H+ movement into the sweat pore for inhibition of sweating could be further exploited to develop new strategies for the control of sweating.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11620
Author(s):  
Zhen-peng Kai ◽  
Yanwei Qiu ◽  
Xue-wei Zhang ◽  
Shan-shan Chen

Due to the contamination and biological toxicity of some fragrance compounds, the environmental and ecological problems of such compounds have attracted more and more attention. However, studies of the toxicity of fragrance compounds for insects have been limited. The toxicity of 48 fragrance compounds for the silkworm Bombyx mori were investigated in this study. All of the fragrance compounds examined had no acute toxicity for B. mori larvae, but eight of them (menthol, maltol, musk xylene, musk tibeten, dibutyl sulfide, nerolidol, ethyl vanillin, and α-amylcinnamaldehyde) exhibited chronic and lethal toxicity with LC50 values from 20 to 120 µM. In a long-term feeding study, musk tibeten, nerolidol, and musk xylene showed significant growth regulatory activity. They were also extremely harmful to the cocooning of B. mori, resulting in small, thin, and loose cocoons. Two important insect hormones, namely, juvenile hormone (JH) and 20-hydroxyecdysone (20-E), were quantified in hemolymph following chronic exposure to musk tibeten, nerolidol, and musk xylene, respectively. Musk tibeten significantly increased JH titer and decreased the 20-E titer in hemolymph, and musk xylene had a significant inhibitory effect on JH titer and increased 20-E titer. Although nerolidol had no effect on hormone levels, exogenous JH mimic nerolidol increased the physiological effects of JH and significantly slowed the growth rate of B. mori larvae. The results showed that these fragrance compounds could interfere with the insect endocrine system, leading to death and abnormal growth. The risk to insects of residual fragrance compounds in the environment is worthy of attention.


2008 ◽  
Vol 2 (1) ◽  
pp. 19-32
Author(s):  
Ghydaa H. A al-jeboury ◽  
Abdul Wahed Baker

The aim of the study was to use lactic acid bacteria (LAB), as probiotic, to treat growth and adhesion property of Proteus mirabilis isolated from patients suffering from urinary tract infection (UTI). For this purpose, one P. mirabilis isolate (P.M.9) was selected out of 9 isolates obtained from 150 urine specimens. Due to its resistance to 11 antibiotics tested, this isolate was treated with three-fold concentrated filtrates of two lactobacillus isolates (as probiotic). Results after treatment, showed that the filtrates exhibited significant inhibitory effect against the pathogenic P.M.9 and its adhesion property especially when only an average of 3-10 bacteria /cell were adhered to each epithelial cell compared to 44-55 bacteria/cell.


Sign in / Sign up

Export Citation Format

Share Document