Impact of the Sampling Period on the Design of Digital PID Controllers

2021 ◽  
Vol 15 ◽  
pp. 92-97
Author(s):  
Dimitris Tsamatsoulis

The impact of the sampling period on the parameterization of a digital PID controller in the frequency domain is attempted using three different digital approximations of the integral action. The controller is implemented in the industrial process of regulation of the cement sulphates in the cement mill outlet. The maximum sensitivity, Ms, has been utilized as a main robustness criterion. For the same Ms, proportional and differential gain, a rise of the sampling period leads to a decrease of the integral gain ki for all the three approximations. For the same sampling period, the function between proportional and integral gain differs for the three approximations studied. If the design satisfies two criteria simultaneously, maximum sensitivity and phase margin in the current study, then the permissible PID gains zone becomes narrower.

2016 ◽  
Vol 62 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Michal Laskawski ◽  
Miroslaw Wcislik

Abstract The paper deals with an analysis of automatic control system with continuous and discrete PID controllers. A method of tuning the parameters of the continuous controller is presented, which is optimal according to the ITAE criterion. The behavior of control systems with discrete controllers whose parameters were tuned using the mentioned method are described. The impact of changes in the sampling period of controlled signal on the control quality is shown. Changes of the values of optimal parameters of discrete PID controllers in relation to changes of the sampling rate of controlled signal are characterized.


2012 ◽  
Vol 433-440 ◽  
pp. 5659-5665
Author(s):  
Xian Hai Wang ◽  
Jin Ling Jia ◽  
Guang Jian Cheng ◽  
Hai Jun Zhang ◽  
Wen Jun Yu

This paper proposes a modularized method for the design and implementation of digital PID controller using DA algorithm based on Field Programmable Gate Array (FPGA) device. It is higher integration, lower power consumption, higher processing speed and more convenient reconfiguration compared with PID controllers based on software. The PID controller is modeled by using Simulink and DSP Builder to generate a system model. The controller coefficients are tuned conveniently by simulink and then pre-written into Look-up Tables(LUTs) in model of the proposed PID controller. After modeling, the simulation wave of step response for proposed PID controller is obtained easily by simulink. And the model of digital PID based on DA is then compiled by using Signal Compiler tool in DSP Builder provided by ALTERA corporation and synthesized by using QUARTUS II platform, and then the created file is downloaded into ALTERA’s FPGA device to implement the proposed PID controller.


Author(s):  
Mohammed Almaged ◽  
Salam Ibrahim Khather ◽  
Abdulla I. Abdulla

<span>This work shows the design and tuning procedure of a discrete PID controller for regulating buck boost converter circuits. The buck boost converter model is implemented using Simscape Matlab library without having to derive a complex mathematical model. A new tuning process of digital PID controllers based on identification data has been proposed. Simulation results are introduced to examine the potentials of the designed controller in power electronic applications and validate the capability and stability of the controller under supply and load perturbations. Despite controller linearity, the new approach has proved to be successful even with highly nonlinear systems. The proposed controller has succeeded in rejecting all the disturbances effectively and maintaining a constant output voltage from the regulator.</span>


2021 ◽  
pp. 89-93
Author(s):  
Konstantin Anatolyevich Kuzmin ◽  
Sergey Mikhaylovich Morozov ◽  
Elena Vitalyevna Balmashnova ◽  
Diana Dmitrievna Zueva

Three-channel PID controllers are widely used in industrial control systems. It is noted that the popularity of PID controllers in the control of industrial processes is explained by their ability to ensure high quality of processes in a wide range of modes, as well as functional simplicity that allows engineers to operate them without any problems.


Author(s):  
Arnisa Myrtellari ◽  
Petrika Marango ◽  
Margarita Gjonaj

The DC motors are widely used in the mechanisms that require control of speed. Different speed can be obtained by changing the field voltage and the armature voltage. The classic PID controllers are widely used in industrial process for speed control. But they aren’t suitable for high performance cases, because of the low robustness of PID controller. So many researchers have been studying various new control techniques in order to improve the system performance and tuning PID controllers. This paper presents particle swarm optimization (PSO) method for determining the optimal PID controller parameters to find the optimal parameters of DC Motor speed control system. The DC Motor system drive is modeled in MATLAB/SIMULINK and PSO algorithm is implemented using MATLAB toolbox. The results obtained through simulation show that the proposed controller can perform an efficient search for the optimal PID controller. Simulation results show performance improvement in time domain specifications for a step response (no overshoot, minimal rise time, steady state error = 0).


2021 ◽  
Vol 1 (2) ◽  
pp. 71-80
Author(s):  
V.A. Kireyeva ◽  
◽  
K.A. Trukhanov ◽  

The aim of the work is to select the optimal values of the parameters of the digital PID controller to eliminate self-oscillations in systems, as well as to optimize the type of transient processes of the servo pneumatic drive. The reason for the study was the problem of the occurrence of self-oscillations in pneumatic systems when using friction models that are closest to reality. The scientific novelty of the article consists in the creation of a computer model and the application of opti-mization methods to improve the quality of transient processes of the pneumatic servo drive, taking into account the Striebeck friction model. The authors of the article optimized the transient processes of the pneumatic servo drive taking into account the selected friction model. The optimal parameters of the PID controller were selected using computer simulation. And the instability of the system was eliminated as well. To optimize the system performance, the gradient descent method was chosen. An assessment of the quality in-dicators of transient processes before and after optimization was made. Based on the simulation re-sults of the pneumatic servo drive system, it can be concluded that the gradient descent method can be used to determine the parameters of the PID controller. The transition from an analog (continuous) system to a digital (discrete) system has been made It is necessary to determine the sampling period for its implementation. The article indicates the main methods for determining the sampling period and shows the disadvantages of these methods. Anal-ysis of the results shows that the methods described in the article should be used only for the first approximation, and the value of the indicated quantity should be selected from the calculation of the minimum error between an analog (continuous) and digital (discrete) system. An error of less than 1% allows the selection of a programmable logic controller. The topic of the article is relevant for scientific research and includes the provision of practical recommendations for determining the parameters of a digital PID controller and selecting a controller for specialists who are inloved in the design of systems that include a pneumatic servo drive.


Author(s):  
Deepak Kumar Lal ◽  
Ajit Kumar Barisal

Background: Due to the increasing demand for the electrical power and limitations of conventional energy to produce electricity. Methods: Now the Microgrid (MG) system based on alternative energy sources are used to provide electrical energy to fulfill the increasing demand. The power system frequency deviates from its nominal value when the generation differs the load demand. The paper presents, Load Frequency Control (LFC) of a hybrid power structure consisting of a reheat turbine thermal unit, hydropower generation unit and Distributed Generation (DG) resources. Results: The execution of the proposed fractional order Fuzzy proportional-integral-derivative (FO Fuzzy PID) controller is explored by comparing the results with different types of controllers such as PID, fractional order PID (FOPID) and Fuzzy PID controllers. The controller parameters are optimized with a novel application of Grasshopper Optimization Algorithm (GOA). The robustness of the proposed FO Fuzzy PID controller towards different loading, Step Load Perturbations (SLP) and random step change of wind power is tested. Further, the study is extended to an AC microgrid integrated three region thermal power systems. Conclusion: The performed time domain simulations results demonstrate the effectiveness of the proposed FO Fuzzy PID controller and show that it has better performance than that of PID, FOPID and Fuzzy PID controllers. The suggested approach is reached out to the more practical multi-region power system. Thus, the worthiness and adequacy of the proposed technique are verified effectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
XianHong Li ◽  
HaiBin Yu ◽  
MingZhe Yuan

This paper presents a design method of the optimal proportional-integral-derivative (PID) controller withɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE) performance index which contains control error and at least first-order error derivative, or even may containnth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO) problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices andɛ-Routh stability are presented for different processes. Control weight matrix andɛ-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed.ɛ-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS) under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

AbstractThe processes which contain at least one pole at the origin are known as integrating systems. The process output varies continuously with time at certain speed when they are disturbed from the equilibrium operating point by any environment disturbance/change in input conditions and thus they are considered as non-self-regulating. In most occasions this phenomenon is very disadvantageous and dangerous. Therefore it is always a challenging task to efficient control such kind of processes. Depending upon the number of poles present at the origin and also on the location of other poles in transfer function different types of integrating systems exist. Stable first order plus time delay systems with an integrator (FOPTDI), unstable first order plus time delay systems with an integrator (UFOPTDI), pure integrating plus time delay (PIPTD) systems and double integrating plus time delay (DIPTD) systems are the classifications of integrating systems. By using a well-controlled positioning stage the advances in micro and nano metrology are inevitable in order satisfy the need to maintain the product quality of miniaturized components. As proportional-integral-derivative (PID) controllers are very simple to tune, easy to understand and robust in control they are widely implemented in many of the chemical process industries. In industries this PID control is the most common control algorithm used and also this has been universally accepted in industrial control. In a wide range of operating conditions the popularity of PID controllers can be attributed partly to their robust performance and partly to their functional simplicity which allows engineers to operate them in a simple, straight forward manner. One of the accepted control algorithms by the process industries is the PID control. However, in order to accomplish high precision positioning performance and to build a robust controller tuning of the key parameters in a PID controller is most inevitable. Therefore, for PID controllers many tuning methods are proposed. the main factors that lead to lifetime reduction in gain loss of PID parameters are described in This paper and also the main methods used for gain tuning based on optimization approach analysis is reviewed. The advantages and disadvantages of each one are outlined and some future directions for research are analyzed.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 257
Author(s):  
Jin Sang Jung ◽  
Ji Hwan Kang

To investigate the impact of burning postharvest crop residues in home stoves, PM2.5 samples (particulate matter with a diameter of <2.5 μm) were collected every 3 h at a rural site in Daejeon, Korea during the postharvest season in 2014. A high concentration of levoglucosan was observed with a peak value of 3.8 µg/m3 during the sampling period. The average mannosan/levoglucosan ratio (0.18) at the rural site during a severe BB episode (levoglucosan > 1 μg/m3) was similar to burnings of pepper stems (0.19) and bean stems (0.18) whereas the average OC/levoglucosan ratio (9.9) was similar to burning of pepper stems (10.0), implying that the severe BB episode was mainly attributed to burning of pepper stems. A very strong correlation was observed between levoglucosan and organic carbon (OC) (R2 = 0.81) during the entire sampling period, suggesting that the emission of organic aerosols at the rural site was strongly associated with the burning of crop residues in home stoves. The average mannosan/levoglucosan ratio (0.17 ± 0.06) in the rural area was similar to that in a nearby urban area in Daejeon (0.16 ± 0.04). It was concluded that crop residue burning in a home stove for space heating is one of the important sources of carbonaceous aerosols not only in a rural area but also in the urban area of Daejeon, Korea during the postharvest season.


Sign in / Sign up

Export Citation Format

Share Document