scholarly journals Effect of Lime and Soil Conditioners on Crop Yields and Soil Aggregation

1969 ◽  
Vol 41 (3) ◽  
pp. 179-188
Author(s):  
M. A. Lugo-López ◽  
J. A. Bonnet ◽  
R. Pérez-Escolar

Data are presented here on the effect of synthetic soil conditioners on aggregation and aggregate stability of acid Lares clay and on their effect, with or without lime, on the yields of sweetpotatoes, cotton, and corn. Three conditioners were used: Formulations 6 and 9 of Krilium, and Aerotil, dry form, each at the rates of 900, 1,800, and 3,600 pounds to the acre. There were 20 treatments: Check, lime, conditioners at three levels, and conditioners at the same three levels plus lime. The data presented indicate that these conditioners will stabilize soil structural units, but will not form them. Five crops were grown as a sequence: Sweetpotatoes, cotton, cotton (a ratoon crop), sweetpotatoes, and corn. All crops, except the cotton ratoon, showed some response to the application of soil conditioners. Sweetpotato, a root crop, was more responsive; but the cotton plant crop responded also to stabilized good structural soil conditions. The largest crop responses measured were in the limed treatments. Increases attributable to lime were obtained either in the presence or absence of synthetic soil conditioners. Liming and rational fertilization seems to be the key to increased productivity in some acid soils of Puerto Rico. The synthetic materials do not have practical possibilities in large-scale farming.

2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


2021 ◽  
Vol 13 (7) ◽  
pp. 3617
Author(s):  
Agnieszka Medyńska-Juraszek ◽  
Agnieszka Latawiec ◽  
Jolanta Królczyk ◽  
Adam Bogacz ◽  
Dorota Kawałko ◽  
...  

Biochar application is reported as a method for improving physical and chemical soil properties, with a still questionable impact on the crop yields and quality. Plant productivity can be affected by biochar properties and soil conditions. High efficiency of biochar application was reported many times for plant cultivation in tropical and arid climates; however, the knowledge of how the biochar affects soils in temperate climate zones exhibiting different properties is still limited. Therefore, a three-year-long field experiment was conducted on a loamy Haplic Luvisol, a common arable soil in Central Europe, to extend the laboratory-scale experiments on biochar effectiveness. A low-temperature pinewood biochar was applied at the rate of 50 t h−1, and maize was selected as a tested crop. Biochar application did not significantly impact the chemical soil properties and fertility of tested soil. However, biochar improved soil physical properties and water retention, reducing plant water stress during hot dry summers, and thus resulting in better maize growth and higher yields. Limited influence of the low-temperature biochar on soil properties suggests the crucial importance of biochar-production technology and biochar properties on the effectiveness and validity of its application in agriculture.


1990 ◽  
Vol 30 (4) ◽  
pp. 569 ◽  
Author(s):  
RA Drew ◽  
MK Smith

Field performance is described for tissue cultured plants and conventional propagules of planting material of banana cultivar 'New Guinea Cavendish' (Musa sp., AAA group, Cavendish subgroup). Tissuecultured plants were produced by either regeneration of plants from callus culture or by micropropagation of plants following the release of dormant buds at the leaf axils of explants. The conventional material consisted of suckers and 'bits' (lateral buds and associated corm material). Tissue-cultured plants established more quickly, were taller, and had a shorter time to bunch emergence and harvest of plant crop than conventional planting material. They had significantly (P<0.05) higher yields in terms of bunch weight, which was a function of greater numbers of fingers and hands. These advantages did not extend to the ratoon crop. Sucker production on tissue-cultured plants was significantly (P<0.01) higher up to 8 months after planting, equal to conventional material from 8 months to harvest, and then significantly lower. Twenty-two per cent of the plants derived from callus were off-types compared with 3% in the line produced by axillary bud proliferation. No off-types were observed in conventional planting material.


1951 ◽  
Vol 41 (1-2) ◽  
pp. 149-162 ◽  
Author(s):  
H. H. Nicholson ◽  
G. Alderman ◽  
D. H. Firth

1. The methods of investigation of the effect of ground water-level on crop growth, together with tho field installations in use, are discussed.2. Direct field experiments are handicapped by the difficulties of achieving close control on a sufficiently large scale, due to considerable variations of surface level and depth of peat within individual fields and to rapid fluctuations in rainfall and evaporation. Many recorded experiments are associated with climatic conditions of substantial precipitation during the growing season.3. Seasonal fluctuations of ground water-level in Fen peat soils in England, in natural and agricultural conditions, are described.4. The local soil conditions are outlined and the implications of profile variations are discussed.5. The effective control of ground water-level on a field scale requires deep and commodious ditches and frequent large underdrains to ensure the movement of water underground with sufficient freedom to give rapid compensatory adjustment for marked disturbances of ground water-level following the incidence of heavy rain or excessive evaporation.6. A working installation for a field experiment in ordinary farming conditions is described and the measure of control attained is indicated.


Author(s):  
Christopher Cammies ◽  
David Mytton ◽  
Rosemary Crichton

AbstractAquaponics is a food production system which connects recirculating aquaculture (fish) to hydroponics (plants) systems. Although aquaponics has the potential to improve soil conditions by reducing erosion and nutrient loss and has been shown to reduce food production related carbon emissions by up to 73%, few commercial aquaponics projects in the EU and UK have been successful. Key barriers to commercial success are insufficient initial investment, an uncertain and complex regulatory environment, and the lack of projects operating on a large scale able to demonstrate profitability. In this paper, we use the UK as a case study to discuss the legal and economic barriers to the success of commercial aquaponics in the EU. We also propose three policies: (1) making aquaponics eligible for the new system of Environmental Land Management grants; (2) making aquaponics eligible for organic certification; and (3) clarifying and streamlining the aquaponics licence application process. The UK’s departure from the EU presents a unique opportunity to review agricultural regulations and subsidies, which in turn could provide evidence that similar reforms are needed in the EU.


2021 ◽  
Vol 13 (9) ◽  
pp. 4748
Author(s):  
Edwin Villagran ◽  
Carlos Bojacá ◽  
Mohammad Akrami

The use of covered structures is an alternative increasingly used by farmers to increase crop yields per unit area compared to open field production. In Latin American countries such as Colombia, productive areas are located in with predominantly hillside soil conditions. In the last two decades, farmers have introduced cover structures adapted to these soil conditions, structures for which the behavior of factors that directly affect plant growth and development, such as microclimate, are still unknown. Therefore, in this research work, a CFD-3D model successfully validated with experimental data of temperature and air velocity was implemented. The numerical model was used to determine the behavior of air flow patterns and temperature distribution inside a Colombian passive greenhouse during daytime hours. The results showed that the slope of the terrain affects the behavior of the air flow patterns, generating thermal gradients inside the greenhouse with values between 1.26 and 16.93 °C for the hours evaluated. It was also found that the highest indoor temperature values at the same time were located in the highest region of the terrain. Based on the results of this study, future researches on how to optimize the microclimatic conditions of this type of sustainable productive system can be carried out.


2016 ◽  
Vol 6 (3) ◽  
pp. 58 ◽  
Author(s):  
Dominic J. Udoh ◽  
Otobong B. Iren ◽  
Jeremiah E. Jonathan

<p class="1Body">Two field experiments were conducted from 2012 to 2013 cropping seasons to evaluate the efficacy and also determine the optimum rates of application for fish pond waste water in comparison with three other manures including one inorganic fertilizer and two organic manures under garden egg (<em>Solanum spp.</em>) crop.Garden egg was fertilized with pond waste water (PW), poultry manure (PM), pig manure (PG) and NPK15:15:15 at equivalent nitrogen (N) rates (0, 150, 300, 450 kg/ha). The treatments were arranged in a split plot under randomized complete block design (RCBD).The results obtained indicated a slight drop in soil pH but soil OM, total N, available P, exchangeable Ca and K increased generally with increasing rates of manures. The PW and PG treatments supported significantly (P&lt;0.05) the highest yields of the crop compared to PM and NPK with the 150 and 300 kg/ha treatments recording the highest increase. These results have shown that under the high rainfall and acidic soil conditions of Akwa Ibom State in Nigeria, PW is useful for the improvement of soil conditions and achievement of higher crop yields when applied at rates that supply N in the range of 150 – 300 kg/ha.</p>


1957 ◽  
Vol 37 (2) ◽  
pp. 102-112
Author(s):  
R. M. Holmes ◽  
S. J. Toth

Crop response to soil structural changes caused by soil conditioner amendments was studied in several different sandy soils of New Jersey. The response varied with the crop and treatment. Those chemicals that were slightly hydrophobic were most effective and generally crop response was greatest on these treatments. Cations such as Na may be added in large amounts as part of some conditioners, and this may result in reduced uptake of other nutrients such as Mg. and K. Except for this effect, conditioners did not reduce nutrient uptake by plants. When elements such as Na and N are added in large amounts as part of some conditioners, there may be an increased uptake of these nutrients.Catalin and VAMA conditioners produced a dry surface mulch which appeared to reduce evaporation. Moisture reserves were, therefore, preserved through a drought and this resulted in increased growth of crops over those grown on other treatments. Cultural practices destroyed the stability of the conditioned aggregates, since in most cases the effect had largely disappeared by the third growing season. Chemicals which were effective in soil aggregate stabilization were also effective as anti-crustants when crusting was a problem.


2020 ◽  
Vol 12 (3) ◽  
pp. 1062 ◽  
Author(s):  
Francis Azumah Chimsah ◽  
Liqun Cai ◽  
Jun Wu ◽  
Renzhi Zhang

Sustainable food production has long been a priority for mankind and this is being challenged by limited arable land, challenged landscapes, and higher human population growth. China started conservation farming around the 1950’s. However, main Conservation Tillage (CT) research started in 1992. Using a systematic meta-analysis approach, this review aims at examining China’s approach to CT and to characterize the main outcomes of long-term CT research across northern China. Data from organizations in charge of CT research in China showed an improvement in crop yield of at least 4% under double cropping systems and 6% under single cropping systems in dry areas of northern China. Furthermore, long-term CT practices were reported to have improved soil physical properties (soil structure, bulk density, pore size, and aggregate stability), soil nutrient levels, and reduction in greenhouse gas emission. Other benefits include significant increase in income levels and protection of the environment. Limitations to CT practice highlighted in this study include occasional reduction in crop yields during initial years of cropping, significant reduction in total N of soils, increase in N2O emission, and the need for customized machinery for its implementation. Outcomes of CT practice are ecologically and economically beneficial though its limitations are worth cogitating.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 939
Author(s):  
Qiang Chen ◽  
Xingyi Zhang ◽  
Li Sun ◽  
Jianhua Ren ◽  
Yaru Yuan ◽  
...  

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize (Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR0.25) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.


Sign in / Sign up

Export Citation Format

Share Document