scholarly journals Successive Saccharification of Waste Paper as a Resource for Bio-product Development

Author(s):  
K.M.P. Mokatse ◽  
J.P.H. van Wyk

Environmental pollution and the exploitation of fossil-based products are topical issues that should be a matter of concern to the global population. The production of bio-based substances from waste biomass is a way to reduce the consumption of fossil fuels and limit environmental pollution. Enzymatic catalysed saccharification of cellulose is an important step for the bio-conversion of biomass such as waste paper into glucose that could be utilized as a feedstock for the production of value added bioproducts and this process can also be considered as an alternative route of waste management. During this study, fresh cellulase enzyme from Trichoderma viride was incubated separately with seven different waste paper materials during twelve successive incubation periods of 2 h each. The amount of sugar released from each paper material during each incubation period was determined. The highest sugar concentration released from each paper materials was produced during the first incubation period except the filter paper for which the highest amount of sugar was produced during the 9th period of incubation. During these optimum sugar producing incubation periods the highest total sugar concentration was released from brown envelope paper (3.3 mg.mL-1 followed by foolscap paper (3.0 mg.mL-1) and office paper (2.8 mg.mL-1) while the lowest amount of sugar was released from Pick ’n Pay paper (0.6 mg.mL-1). The relative saccharification percentage was also calculated which showed that filter paper produced the highest amounts of sugar followed by newspaper, and foolscap paper with advertising paper from a retailer. Pick ’n Pay offered the highest resistance towards cellulase catalysed bio-conversion into sugar.

2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Carlos Aristizabal ◽  
Pedro Alvarado ◽  
Andrés Vargas

Second-generation biomass is a renewable resource that can address the increasing global energy demand and help to partially substitute the use of and dependence on fossil fuels, since it can be transformed into gas, liquid and/or solid fuels by physical, thermal, thermochemical and/or biological processes. However, its potential is not fully exploited because the process to extract the phytochemicals present in such organic byproducts has been largely omitted. Natural compounds are of interest to high value-added industries such as cosmetics and pharmaceutics. Therefore, this work proposes to thoroughly use such residual biomass in a biorefinery by a simultaneous, efficient and sustainable integration and operation of extraction processes to obtain phytochemicals and functional extracts. A thermochemical process known as gasification is implemented to produce syngas, which can be turned into fuels, chemicals, and energy such as methanol and synthetic gasoline. Furthermore, this review article describes the state of the art of each process and the concept of biorefinery.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 2584-2595
Author(s):  
Kehong Zhang ◽  
Hui Xiao ◽  
Yuhang Su ◽  
Yanrong Wu ◽  
Ying Cui ◽  
...  

As an important sustainable source of biomass, lignocellulosic materials are highly recalcitrant to biotransformation, which limits their use and prevents economically viable conversion into value-added products. Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biochemical feedstocks. In this work, a mixture of wood powder and waste paper was dissolved in the ionic liquid 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). Composite films were made from the regenerated lignocellulosic materials in [AMIM]Cl by adjusting the ratio of the raw materials. The physical and mechanical properties of biomass composite films were determined by optical microscopy (OM), Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), and tensile strength tests. The results indicated that lignocellulosic materials were dissolved in [AMIM]Cl by destroying inter- and intramolecular hydrogen bonds between lignocelluloses. With increasing waste paper cellulose content, the dissolution of the fir powder in [AMIM]Cl was accelerated, and the tensile strength and elongation at break of the composite films increased. The rate of dissolution initially rose rapidly with increasing content of waste paper cellulose content, but the rate leveled off when the content was above 40%. This research highlights new opportunities for biodegradable composite films made from waste biomass.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Shao ◽  
Xiaodong Zhang

Carbon dioxide (CO2) from the excessive consumption of fossil fuels has exhibited a huge threat to the planet’s ecosystem. Electrocatalytic CO2 reduction into value-added chemicals have been regarded as a...


2009 ◽  
Vol 2 (3) ◽  
pp. 305-312 ◽  
Author(s):  
A. Nesci ◽  
S. Marín ◽  
M. Etcheverry ◽  
V. Sanchis

This research was undertaken to evaluate the effects of the natural phytochemicals trans-cinnamic acid (CA) alone at concentrations of 20 and 25 mM, ferulic acid (FA) at concentration of 30 mM and two mixtures, CA-FA (20+30 mM) and CA-FA (25+30 mM) on natural maize mycoflora, Aspergillus section Flavi population and aflatoxin B1 production. These studies were carried out in maize grain in relation to a water activity of 0.99, 0.97 and 0.94. CA at 25 mM and the mixture CA-FA (25+30 mM) were the most effective treatments at inhibiting natural maize mycoflora at all aw assayed after 11 and 35 days of incubation at 25 °C. In general, 20 mM CA caused complete inhibition of Aspergillus section Flavi population at all aw values tested during all incubation period without an additional inoculum. 20 mM CA and 25 mM CA showed the major inhibitory effect on aflatoxin B1 accumulation of control and Aspergillus section Flavi additionally inoculated during all incubation periods. The data showed that CA and FA could be considered as effective fungitoxicants for natural maize mycoflora and aflatoxigenic fungi in the aw range 0.99 to 0.94. The information obtained shows promise for controlling aflatoxigenic fungi in stored maize.


2014 ◽  
Vol 59 (3) ◽  
pp. 575-590 ◽  
Author(s):  
Piotr Czaja ◽  
Paweł Kamiński ◽  
Jerzy Klich ◽  
Antoni Tajduś

Abstract Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind’s natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.


2021 ◽  
Author(s):  
M. Amin Farkhondehfal ◽  
Juqin Zeng

The CO2 that comes from the use of fossil fuels accounts for about 65% of the global greenhouse gas emission, and it plays a critical role in global climate changes. Among the different strategies that have been considered to address the storage and reutilization of CO2, the transformation of CO2 into chemicals and fuels with a high added-value has been considered a winning approach. This transformation is able to reduce the carbon emission and induce a “fuel switching” that exploits renewable energy sources. The aim of this chapter is to categorize different heterogeneous electrocatalysts which are being used for CO2 reduction, based on the desired products of the above mentioned reactions: from formic acid and carbon monoxide to methanol and ethanol and other possible by products. Moreover, a brief description of the kinetic and mechanism of the CO2 reduction reaction) and pathways toward different products have been discussed.


2019 ◽  
Vol 34 (4) ◽  
pp. 230-242
Author(s):  
Abdelhamid M Hamad

The effect of 6 sucrose concentrations (5, 10, 15, 20, 25, 30 g/l) over 4 incubation periods (30, 45, 60, 75 days) on in vitro rooting of Moris pineapple cultured in liquid half strength MS medium enriched with IBA at 2.0 mg/l was investigated. At all incubation periods, all shoots in medium enriched with sucrose at 5 g/l failed to root, and no roots formed within the first 30 days in medium enriched with sucrose at 10 g/l. After 30 days of incubation, the highest rooting percentage (66 %), tallest plantlets (23 mm tall), highest (3.4 roots) and longest (5.3 mm) root per shoot were obtained in medium enriched with sucrose at 25, 10, 15, 15 g/l respectively, while after 45 days, the highest of all rooting aspects (75 %, 32.3 mm tall, 3.7 roots, 7 mm long), were obtained in medium enriched with sucrose at 15 g/l. After 60 days, the highest rooting percentage (91.7 %) and tallest plantlets (36.7 mm tall) were obtained in medium enriched with sucrose at 20 g/l while highest roots per shoot (3.7 roots) and longest root (10.7 mm) were obtained in medium enriched with sucrose at 15 g/l. After 75 days, all shoots rooted (100 %) in medium enriched with sucrose at 10 and 20 g/l, while sucrose at 25 g/l resulted in tallest plantlets (46.3 mm tall) and at 20 g/l resulted in highest (4.7 roots) and longest roots (27.3 mm). At each incubation period, there was a different optimum sucrose enrichment for different rooting parameters.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6333
Author(s):  
Virendra Kumar Yadav ◽  
Krishna Kumar Yadav ◽  
Vineet Tirth ◽  
Govindhan Gnanamoorthy ◽  
Nitin Gupta ◽  
...  

Environmental pollution is one of the major concerns throughout the world. The rise of industrialization has increased the generation of waste materials, causing environmental degradation and threat to the health of living beings. To overcome this problem and effectively handle waste materials, proper management skills are required. Waste as a whole is not only waste, but it also holds various valuable materials that can be used again. Such useful materials or elements need to be segregated and recovered using sustainable recovery methods. Agricultural waste, industrial waste, and household waste have the potential to generate different value-added products. More specifically, the industrial waste like fly ash, gypsum waste, and red mud can be used for the recovery of alumina, silica, and zeolites. While agricultural waste like rice husks, sugarcane bagasse, and coconut shells can be used for recovery of silica, calcium, and carbon materials. In addition, domestic waste like incense stick ash and eggshell waste that is rich in calcium can be used for the recovery of calcium-related products. In agricultural, industrial, and domestic sectors, several raw materials are used; therefore, it is of high economic interest to recover valuable minerals and to process them and convert them into merchandisable products. This will not only decrease environmental pollution, it will also provide an environmentally friendly and cost-effective approach for materials synthesis. These value-added materials can be used for medicine, cosmetics, electronics, catalysis, and environmental cleanup.


2006 ◽  
Vol 7 (3) ◽  
pp. 155-162
Author(s):  
Zdenek Wegscheider ◽  
Mojmir Sabolovic

During the past two decades academia, industry and government have aimed more and more their attention to the phenomenon of a biobased economy providing society with non‐food biobased products. Now developing are biomass industries that make an array of commercial products, including fuels, electricity, chemicals, adhesives, lubricants and building materials, as well as new clothing fibers and plastics. Instead of fossil resources “green” biobased economy uses renewable grown or waste biomass. The lead supplying role to the biobased economy is held by a sector of agriculture, above all the crop production. In this manner an effective limitation of food surplus may occur in the EU market and enhance a value added to all vertical industry. Industrial‐scale production of biobased materials in time with consumers’ changing attitudes towards sustainable economic and social development may affect a wide array of consequences which nowadays can be tediously estimated. Food safety along with food security is one of the hottest issues especially in the United States, knowing that human population and biobased economy compete in using and processing a broad range of agricultural crops. An energy analysis aspect of this caloric relationship among agricultural sector on the supply side and human population and biobased economy on the other – demand side is assumed to represent the principal aim of this study. Consequently, there is the need to evaluate whether a quantity of Czech Crop Output Total is possible to nourish the Czech population and whether there is an available caloric surplus suitable as a biomass resource for biobased economy which is actually taking root.


Sign in / Sign up

Export Citation Format

Share Document