scholarly journals Ecogenetic plasticity and genetic variation in Populus hybrids under the impact of simulated climate change related stressors

2020 ◽  
Vol 26 (2) ◽  
Author(s):  
Valda Gudynaitė-Franckevičienė ◽  
Alfas Pliūra ◽  
Vytautas Suchockas

  To meet the needs of carbon sequestration and production of raw materials from renewable natural resources for the timber market of the European Union, it is necessary to expand forest plantation areas. The efficiency of short rotation forestry depends primarily on the selection of hybrids and clones, suitable for the local environmental conditions. We postulate that ecogenetic response, ecogenetic plasticity and genotypic variation of different hybrids of poplars (Populus L.) depend both on the type of stressors (spring frosts, summer drought, increased UV-B radiation, warm winters) and peculiarities of the cross-bred species as well as on their genetic preadaptations to native environmental conditions of their origin. The aim of the study was to estimate the ecogenetic plasticity, genotypic variation of adaptive traits and adaptability of Populus hybrids under simulated conditions of the expected climate change. The research was performed with the cultivars and experimental clones of three different intraspecific hybrids of poplars (P. nigra L., P. deltoides Bartr. ex Marsh, and P. trichocarpa Torr. & Gray.) and four interspecific hybrids of poplars (P. deltoides L. × P. nigra, P. deltoides × P. trichocarpa, P. maximowiczii A. Henry × P. trichocarpa, and P. balsamifera L. × P. trichocarpa). Simulated spring frosts and summer drought treatments had a substantial impact on growth of trees, but the hybrid and clone effects were also significant and showed that many hybrids and clones in general retain their features/differences under stressful environmental conditions. A strongly expressed hybrid and clone interactions with simulated frost and drought effects (genotype-environment interaction, G × E) and not strong B-type genetic correlations of the parameters of the same hybrids and clones across different treatments showed different ecogenetic response, plasticity and specific ecological preferences of the clones and hybrids. The sensitivity of hybrids to UV-B radiation varied and depended on the origin of their parental trees and this sensitivity partially reflected their susceptibility also to other stressors. Warm winters adversely effected the growth of some hybrids while others - P. nigra × P. nigra and P. trichocarpa × P. trichocarpa, which parents originated from the southern part of their natural distribution range have increased their growth. This treatment also resulted in reduction of the heritability and genotypic variation of growth traits

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 892
Author(s):  
Valda Gudynaitė-Franckevičienė ◽  
Alfas Pliūra

To have a cleaner environment, good well-being, and improve the health of citizens it is necessary to expand green urban and suburban areas using productive and adapted material of tree species. The quality of urban greenery, resistance to negative climate change factors and pollution, as well as efficiency of short-rotation forestry in suburban areas, depends primarily on the selection of hybrids and clones, suitable for the local environmental conditions. We postulate that ecogenetic response, phenotypic plasticity, and genotypic variation of hybrid poplars (Populus L.) grown in plantations are affected not only by the peculiarities of hybrids and clones, but also by environmental conditions of their vegetative propagation. The aim of the present study was to estimate growth and biochemical responses, the phenotypic plasticity, genotypic variation of adaptive traits, and genetically regulated adaptability of Populus hybrids in field trials which may be predisposed by the simulated contrasting temperature conditions at their vegetative propagation phase. The research was performed with the 20 cultivars and experimental clones of one intraspecific cross and four different interspecific hybrids of poplars propagated under six contrasting temperature regimes in phytotron. The results suggest that certain environmental conditions during vegetative propagation not only have a short-term effect on tree viability and growth, but also can help to adapt to climate change conditions and grow successfully in the long-term. It was found that tree growth and biochemical traits (the chlorophyll A and B, pigments content and the chlorophyll A/B ratio) of hybrid poplar clones grown in field trials, as well as their traits’ genetic parameters, were affected by the rooting-growing conditions during vegetative propagation phase. Hybrids P. balsamifera × P. trichocarpa, and P. trichocarpa × P. trichocarpa have shown the most substantial changes of biochemical traits across vegetative propagation treatments in field trial. Rooting-growing conditions during vegetative propagation had also an impact on coefficients of genotypic variation and heritability in hybrid poplar clones when grown in field trials.


2021 ◽  
Author(s):  
Richard Dallison ◽  
Sopan Patil

<p>The impact of climate change on the hydrological cycle and catchment processes has been extensively studied. In Wales, such changes are projected to have a substantial impact on hydrological regimes. However, the impact on the water abstraction capability of key sectors in the country, such as hydropower (HP) and public water supply (PWS), is not yet fully understood. We use the Soil and Water Assessment Tool (SWAT) to generate future (2021-2054) daily streamflows under a worst-case scenario of greenhouse gas emissions (Representative Concentration Pathway 8.5) at two large catchments in Wales, the Conwy and Tywi. SWAT streamflow output is used to estimate the abstractable water resources, and therefore changes in the average generation characteristics for 25 run-of-river HP schemes across Conwy and Tywi and the total unmet demand for a single large PWS abstraction in the Tywi. This unmet PWS demand is assessed using the Water Evaluation And Planning (WEAP) system under increasing, static, and declining demand scenarios. Mann-Kendall trend analysis is performed to detect and characterise the trends for both sectors.</p><p>Results show greater seasonality in abstraction potential through the study period, with an overall decrease in annual abstraction volume due to summer and autumn streamflow declines outweighing increases seen in winter and spring. For HP, these trends result in a projected decline in annual power generation potential, despite an increasing number of days per year that maximum permitted abstraction is reached. For PWS, under all future demand scenarios, annually there is an increase in the number of days where demand is not met as well as the total shortfall volume of water. Our results suggest that currently installed HP schemes may not make optimal use of future flows, and that the planning of future schemes should take account of these to ensure the most efficient operation is achieved. Moreover, PWS supply sustainability is under threat and will require management and mitigation measures to be implemented to ensure future supplies. Overall, our study provides a novel perspective on the future water resource availability in Wales, giving context to management planning to ensure future HP generation efficiency and PWS sustainability.</p>


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 609 ◽  
Author(s):  
Ester González de Andrés

Forest ecosystems are undergoing unprecedented changes in environmental conditions due to global change impacts. Modification of global biogeochemical cycles of carbon and nitrogen, and the subsequent climate change are affecting forest functions at different scales, from physiology and growth of individual trees to cycling of nutrients. This review summarizes the present knowledge regarding the impact of global change on forest functioning not only with respect to climate change, which is the focus of most studies, but also the influence of altered nitrogen cycle and the interactions among them. The carbon dioxide (CO2) fertilization effect on tree growth is expected to be constrained by nutrient imbalances resulting from high N deposition rates and the counteractive effect of increasing water deficit, which interact in a complex way. At the community level, responses to global change are modified by species interactions that may lead to competition for resources and/or relaxation due to facilitation and resource partitioning processes. Thus, some species mixtures can be more resistant to drought than their respective pure forests, albeit it depends on environmental conditions and species’ functional traits. Climate change and nitrogen deposition have additional impacts on litterfall dynamics, and subsequent decomposition and nutrient mineralization processes. Elemental ratios (i.e., stoichiometry) are associated with important ecosystem traits, including trees’ adaptability to stress or decomposition rates. As stoichiometry of different ecosystem components are also influenced by global change, nutrient cycling in forests will be altered too. Therefore, a re-assessment of traditional forest management is needed in order to cope with global change. Proposed silvicultural systems emphasize the key role of diversity to assure multiple ecosystem services, and special attention has been paid to mixed-species forests. Finally, a summary of the patterns and underlying mechanisms governing the relationships between diversity and different ecosystems functions, such as productivity and stability, is provided.


2019 ◽  
Vol 39 (12) ◽  
pp. 1937-1960 ◽  
Author(s):  
Katarína Merganičová ◽  
Ján Merganič ◽  
Aleksi Lehtonen ◽  
Giorgio Vacchiano ◽  
Maša Zorana Ostrogović Sever ◽  
...  

Abstract Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.


2020 ◽  
Author(s):  
Dmitry Sein ◽  
William Cabos ◽  
Pankaj Kumar ◽  
Vladimir Ryabchenko ◽  
Stanislav Martyanov ◽  
...  

<p>There are few studies dedicated to assessing the impact of biogeochemistry feedbacks on the climate change signal. In this study, we evaluate this impact in a future climate change scenario over the Indian subcontinent with the coupled regional model ROM in the Indian CORDEX area.In ROM a global ocean model (MPIOM) with regionally high horizontal resolution (up to 15 km resolution in the Bay of Bengal) is coupled to an atmospheric regional model (REMO, with 25 km resolution) and global terrestrial hydrology model. The ocean and the atmosphere are interacting within the region covered by the atmospheric domain. Outside this domain, the ocean model is not coupled to the atmosphere, being driven by prescribed atmospheric forcing, thus running in so-called stand-alone mode.</p><p>To assess the impact of biogeochemical feedbacks on the climate change signal, we compare two simulations with ROM. In both simulations, the model is driven by data from a climate change simulation under the RCP 8.5 scenario with the MPI-ESM global model and differ only in the activation of the biochemistry module of MPIOM. In the first simulation, we use a light attenuation parameterization based on the Jerlov water types, when the attenuation coefficient varies spatially depending on the water type specified but does not vary in time. In the second simulation, we introduce the biochemical feedbacks as implemented in the global ocean biogeochemistry model HAMOCC.  </p><p>Both simulations capture the main features of the present time atmospheric and oceanic variability in the region and the model with HAMOCC reproduces well the intra-annual dynamics of the marine ecosystem in the northern Indian Ocean.</p><p>A comparison of the simulated changes in atmospheric variables shows that the feedbacks have a substantial impact on the climate change signal for precipitation and air temperature, especially over the central Indian region.</p><p>Acknowledgement: The work was supported by the Russian Science Foundation (Project 19-47-02015) and Indian project no. DST/INT/RUS/RSF/P-33/G.</p>


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 867 ◽  
Author(s):  
Aleena Joy ◽  
Frank R. Dunshea ◽  
Brian J. Leury ◽  
Iain J. Clarke ◽  
Kristy DiGiacomo ◽  
...  

Climate change is a major global threat to the sustainability of livestock systems. Climatic factors such as ambient temperature, relative humidity, direct and indirect solar radiation and wind speed influence feed and water availability, fodder quality and disease occurrence, with production being most efficient in optimal environmental conditions. Among these climatic variables, ambient temperature fluctuations have the most impact on livestock production and animal welfare. Continuous exposure of the animals to heat stress compromises growth, milk and meat production and reproduction. The capacity of an animal to mitigate effects of increased environmental temperature, without progressing into stress response, differs within and between species. Comparatively, small ruminants are better adapted to hot environments than large ruminants and have better ability to survive, produce and reproduce in harsh climatic regions. Nevertheless, the physiological and behavioral changes in response to hot environments affect small ruminant production. It has been found that tropical breeds are more adaptive to hot climates than high-producing temperate breeds. The growing body of knowledge on the negative impact of heat stress on small ruminant production and welfare will assist in the development of suitable strategies to mitigate heat stress. Selection of thermotolerant breeds, through identification of genetic traits for adaption to extreme environmental conditions (high temperature, feed scarcity, water scarcity), is a viable strategy to combat climate change and minimize the impact on small ruminant production and welfare. This review highlights such adaption within and among different breeds of small ruminants challenged by heat stress.


2018 ◽  
Vol 58 (7) ◽  
pp. 1201 ◽  
Author(s):  
Mário L. Santana Jr ◽  
Joanir P. Eler ◽  
Annaiza B. Bignardi ◽  
Arione A. Boligon ◽  
José B. S. Ferraz

In tropical production systems, beef cattle are raised in highly heterogeneous environments. Heterogeneity is, therefore, expected to exist in the (co)variance components for traits of economic interest in different production environments. The main objective of the present study was to estimate genetic correlations between growth traits and reproductive performance of beef females, depending on the environment. The present study was conducted in the tropical region of Brazil, applying a multiple-trait random regression animal model to field records of heifer pregnancy (HP), hip height, bodyweight at ~18 months of age (BW18) and postweaning weight gain (PWG) from 20 893 Nelore females. As evidence of genotype by environment interaction (G × E), heterogeneity of genetic variance across environments was observed mainly for HP, PWG and BW18. Moreover, the estimates of genetic correlation within these traits reached values lower than unity on the environmental gradient. The genetic correlation among growth traits tended to be stronger in favourable environments, a fact that should favour correlated responses under these conditions. In contrast, the genetic correlations between growth traits and HP tended to become weaker and even exhibited little evidence of antagonism in more favourable environments. On the basis of these findings, selection for higher growth in extreme favourable environments should result in little or no damage to HP as a correlated response. All these results lead us to believe that the G × E is an important factor to be considered in genetic evaluations of beef cattle raised in tropical environments.


2021 ◽  
Author(s):  
Thibault Moulin ◽  
Pierluigi Calanca

<p>European permanent grasslands not only represent a backbone for dairy and meet production, but also are hotspots of biodiversity, providing important ecosystem services to society. Understanding how climate variability and change affect the botanical composition of permanent grasslands is therefore essential for informing adaptation and helping farmers targeting sustainable development goals. It is also a key requirement for gauging climate change effects on forage quality, an aspect often overlooked in impact assessments. In this contribution, we present results of a modelling effort to understand short- and long-term changes in grassland biodiversity in response to climatic variations. We use <em>DynaGraM</em>, a recently developed process-based model for simulating community dynamics in multi-species managed grasslands. Earlier we demonstrated that <em>DynaGraM</em> is capable of representing the composition of permanent grasslands in the French Jura Mountains inferred from floristic relevés. In these earlier investigations, we also showed that the model predicts highest, resp. lowest vegetation diversity for extensive grazing, resp. extensive mowing. We further found that the time scales of responses to external perturbations largely dependent on management, with shorter time scales (of the order of 5 to 10 years) under grazing than under mowing (of the order of 50 years).</p><p>Here we apply the model to examine how increasing summer aridity affects the species composition of pastures in the same geographic area. To drive the model, we use a set of climate change scenarios obtained from the CMIP5 repository, which we downscaled with the help of the LARS-WG stochastic weather generator. The results underline that management intensity modulates the impact of summer drought on both yield as well as botanical diversity, with largest changes over time in the latter under extensive grazing. Apart from presenting the results in more detail, we also discuss their practical implications and opportunities to extend in future the scope of this work.</p>


2008 ◽  
Vol 57 (1-6) ◽  
pp. 306-311 ◽  
Author(s):  
B. Hannrup ◽  
G. Jansson ◽  
Ö. Danell

Abstract To estimate the amount of genotype by environment interaction (G x E) data was obtained within the Swedish breeding program of Pinus sylvestris L. The calculations were based on estimates of G x E expressed by the genetic correlations across trials. In total, 66 progeny trials were included coming from 17 different test series. The number of parents tested per progeny trial was in average 52. Some parents were tested in several series and in total 812 parents were represented in the study. The results of our study showed that the amount of G x E for growth traits in Pinus sylvestris in southern Sweden was low. The median genetic correlation across trials for height, height increment and diameter were in the range 0.75-0.80 and the pattern of interaction was largely unpredictable from site differences in site index, latitude, longitude and altitude.


2018 ◽  
Vol 1 (18) ◽  
Author(s):  
Svjetlana Radmanović ◽  
Nataša Nikolić ◽  
Aleksandar Đorđević

This study examined the impact of climate, altitude and landforms on humic acids (HA) opticalproperties (E4/E6, ΔlogK, RF indexes) in Serbian Rendzina soils. HA humification degree of calcareousand decarbonated Rendzinas under natural vegetation (forest and grassland, separately) decreased withaltitude increasing. This particular rule was not manifested in arable Rendzinas. HA humificationdegree in Rendzinas on flat positions (hilltop and footslope) is significantly higher than in Rendzinas onslope sides. Humification degree of HA is the highest in Rendzinas in eastern Serbia (in the vicinity ofNegotin), followed by central Serbia (Sumadija) and Srem, southeast and finally, southeast andsouthwest Serbia. With respect to the climate change foreseen for the end of this century, i.e. increase ofprecipitation and temperature variance among the regions in Serbia, also an increase in variance ofquality of humic acids in Rendzinas on different altitudes and regions can be expected.


Sign in / Sign up

Export Citation Format

Share Document