scholarly journals Missense variant in interleukin-6 signal transducer identified as susceptibility locus for rheumatoid arthritis in Chinese patients

2021 ◽  
Vol 36 (4) ◽  
pp. 603-610
Author(s):  
Khai Pang Leong ◽  
Mei Yun Yong ◽  
Liuh Ling Goh ◽  
Chia Mun Woo ◽  
Chia Wei Lim ◽  
...  

Objectives: This study aims to uncover variants of large effect size and allele frequency below 5% by sequencing all extant genes associated with rheumatoid arthritis (RA) in a homogeneous patient cohort. Patients and methods: This retrospective study was conducted between January 2001 and December 2017. We selected Chinese RA patients positive for anti-citrullinated peptide antibody (ACPA). All the 128 known candidate genes identified through genome-wide association studies were sequenced in 48 RA patients (15 males, 33 females; mean age 53.32±8.98 years; range, 32 to 75 years) and 45 controls (11 males, 34 females; mean age 32.18±9.54; range, 21 to 57 years). The exonic regions of these genes were sequenced. The resultant data were analyzed for association using single variant association and pathway-based association enrichment tests. The genetic burden due to low-frequency variants was assessed with the C-alpha test. The candidate variants that showed significant association were validated in a larger cohort of 500 RA cases (71 males, 429 females; mean age 48.6±12.2 years; range, 24 to 92 years) and 500 controls (66 males, 434 females; mean age 32.3±10.1 years; range, 21 to 73 years). Results: Thirty-nine variants in 21 genes were identified using single variant association analysis and C-alpha test, with stepwise filtering. Among these, the missense variant in interleukin-6 signal transducer (IL-6ST) 5:55260065 (p.Cys47Phe) was significantly associated with RA in Chinese patients in Singapore. Conclusion: Our results suggest that a mutation in IL-6ST (5:55260065) confers risk of RA in Chinese patients in Singapore.

2017 ◽  
Author(s):  
Rosa B. Thorolfsdottir ◽  
Gardar Sveinbjornsson ◽  
Patrick Sulem ◽  
Stefan Jonsson ◽  
Gisli H. Halldorsson ◽  
...  

AbstractWe performed a meta-analysis of genome-wide association studies on atrial fibrillation (AF) among 14,710 cases and 373,897 controls from Iceland and 14,792 cases and 393,863 controls from the UK Biobank, focusing on low frequency coding and splice mutations, with follow-up in samples from Norway and the US. We observed associations with two missense (OR=1.19 for both) and one splice-donor mutation (OR=1.52) in RPL3L, encoding a ribosomal protein primarily expressed in skeletal muscle and heart. Analysis of 167 RNA samples from the right atrium revealed that the splice donor mutation in RPL3L results in exon skipping. AF is the first disease associated with RPL3L and RPL3L is the first ribosomal gene implicated in AF. This finding is consistent with tissue specialization of ribosomal function. We also found an association with a missense variant in MYZAP (OR=1.37), encoding a component of the intercalated discs of cardiomyocytes, the organelle harbouring most of the mutated proteins involved in arrhythmogenic right ventricular cardiomyopathy. Both discoveries emphasize the close relationship between the mechanical and electrical function of the heart.


2017 ◽  
Vol 96 (11) ◽  
pp. 1314-1321 ◽  
Author(s):  
A.K. Hoebel ◽  
D. Drichel ◽  
M. van de Vorst ◽  
A.C. Böhmer ◽  
S. Sivalingam ◽  
...  

Nonsyndromic cleft palate only (nsCPO) is a facial malformation that has a livebirth prevalence of 1 in 2,500. Research suggests that the etiology of nsCPO is multifactorial, with a clear genetic component. To date, genome-wide association studies have identified only 1 conclusive common variant for nsCPO, that is, a missense variant in the gene grainyhead-like-3 ( GRHL3). Thus, the underlying genetic causes of nsCPO remain largely unknown. The present study aimed at identifying rare variants that might contribute to nsCPO risk, via whole-exome sequencing (WES), in multiply affected Central European nsCPO pedigrees. WES was performed in 2 affected first-degree relatives from each family. Variants shared between both individuals were analyzed for their potential deleterious nature and a low frequency in the general population. Genes carrying promising variants were annotated for 1) reported associations with facial development, 2) multiple occurrence of variants, and 3) expression in mouse embryonic palatal shelves. This strategy resulted in the identification of a set of 26 candidate genes that were resequenced in 132 independent nsCPO cases and 623 independent controls of 2 different ethnicities, using molecular inversion probes. No rare loss-of-function mutation was identified in either WES or resequencing step. However, we identified 2 or more missense variants predicted to be deleterious in each of 3 genes ( ACACB, PTPRS, MIB1) in individuals from independent families. In addition, the analyses identified a novel variant in GRHL3 in 1 patient and a variant in CREBBP in 2 siblings. Both genes underlie different syndromic forms of CPO. A plausible hypothesis is that the apparently nonsyndromic clefts in these 3 patients might represent hypomorphic forms of the respective syndromes. In summary, the present study identified rare variants that might contribute to nsCPO risk and suggests candidate genes for further investigation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucas D. Ward ◽  
Ho-Chou Tu ◽  
Chelsea B. Quenneville ◽  
Shira Tsour ◽  
Alexander O. Flynn-Carroll ◽  
...  

AbstractUnderstanding mechanisms of hepatocellular damage may lead to new treatments for liver disease, and genome-wide association studies (GWAS) of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum activities have proven useful for investigating liver biology. Here we report 100 loci associating with both enzymes, using GWAS across 411,048 subjects in the UK Biobank. The rare missense variant SLC30A10 Thr95Ile (rs188273166) associates with the largest elevation of both enzymes, and this association replicates in the DiscovEHR study. SLC30A10 excretes manganese from the liver to the bile duct, and rare homozygous loss of function causes the syndrome hypermanganesemia with dystonia-1 (HMNDYT1) which involves cirrhosis. Consistent with hematological symptoms of hypermanganesemia, SLC30A10 Thr95Ile carriers have increased hematocrit and risk of iron deficiency anemia. Carriers also have increased risk of extrahepatic bile duct cancer. These results suggest that genetic variation in SLC30A10 adversely affects more individuals than patients with diagnosed HMNDYT1.


Author(s):  
Tiit Nikopensius ◽  
Priit Niibo ◽  
Toomas Haller ◽  
Triin Jagomägi ◽  
Ülle Voog-Oras ◽  
...  

Abstract Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points• Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition.• Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe.• The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci.• The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Haruka Tsuchiya ◽  
Mineto Ota ◽  
Keishi Fujio

Abstract Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by tumor-like hyperplasia and inflammation of the synovium, which causes synovial cell invasion into the bone and cartilage. In RA pathogenesis, various molecules in effector cells (i.e., immune cells and mesenchymal cells) are dysregulated by genetic and environmental factors. Synovial fibroblasts (SFs), the most abundant resident mesenchymal cells in the synovium, are the major local effectors of the destructive joint inflammation and exert their effects through the pathogenic production of molecules such as interleukin-6. Main body To date, more than 100 RA susceptibility loci have been identified in genome-wide association studies (GWASs), and finding novel therapeutic targets utilizing genome analysis is considered a promising approach because some candidate causal genes identified by GWASs have previously been established as therapeutic targets. For further exploration of RA-responsible cells and cell type-specific therapeutic targets, integrated analysis (or functional genome analysis) of the genome and intermediate traits (e.g., transcriptome and epigenome) is crucial. Conclusion This review builds on the existing knowledge regarding the epigenomic abnormalities in RASFs and discusses the recent advances in single-cell analysis, highlighting the prospects of SFs as targets for safer and more effective therapies against RA.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e75951 ◽  
Author(s):  
Guiyou Liu ◽  
Yongshuai Jiang ◽  
Xiaoguang Chen ◽  
Ruijie Zhang ◽  
Guoda Ma ◽  
...  

2019 ◽  
Author(s):  
Jing Yang ◽  
Amanda McGovern ◽  
Paul Martin ◽  
Kate Duffus ◽  
Xiangyu Ge ◽  
...  

AbstractGenome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T-cells over 24 hours, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T-cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9.


Sign in / Sign up

Export Citation Format

Share Document