scholarly journals A Study on Mechanical Properties of Al7068 Based Metal Matrix Composite Reinforced with Rice Husk Ash (RHA) and Silicon Carbide (SiC)

Author(s):  
Syed Akbar Ali and B.S Motgi

This paper deals with the fabrication of Al-7068 composites manufactured by powder metallurgy route reinforced with different weight percentages of rice husk ash (RHA) and SiC. A low pressure of 400mpa was applied for compacting the composites and sintered at a temperature of 720°C for three hour. SEM and EDX analysis was done to study the micro-structural behavior. Hardness and compression test were carried out. The hardness has been improved by adding the weight percentage of SiC but seems to be crash by adding the weight percentage of Rice Husk Ash (RHA). The compressive strength was found to be varying.

Author(s):  
Mallikarjun Nagagonda and B.S Motgi

This paper deals with the fabrication of Al-7075 composites manufactured by powder metallurgy route reinforced with different weight percentages of Sugar Cane Husk Ash (SCHA) and Silicon Carbide (SiC) A low pressure of 400 MPa was applied for compacting the composites and sintered at a temperature of 720oC for three hour. SEM and EDX analysis was done to study the micro-structural behavior. Hardness and compression test were carried out. The hardness has been improved by adding the weight percentage of Silicon Carbide (SiC) but seems to be crash by adding the weight percentage of Sugar Cane Husk Ash (SCHA). The compressive strength was found to be varying.


2015 ◽  
Vol 1119 ◽  
pp. 234-238 ◽  
Author(s):  
Meena Laad ◽  
Vijaykumar S. Jatti ◽  
Satyendra Yadav

The excellent mechanical properties of Aluminium Metal Matrix Composites find applications in a variety of engineering applications in the automotive, aerospace and heavy machinery industries. This study aims at synthesis and characterization of Al 64430 reinforced with SiC particles and Rice Husk Ash (RHA). Rice husk ash is an agricultural waste which is produced in millions of tons worldwide. Aluminium was used as the base metal. With liquid metallurgy technique the metal matrix composites were prepared. The MMCs were synthesized with 3 % weight percentage RHA in Al metal matrix and the mechanical properties such as hardness, tensile strength and structural properties of MMCs were studied. The microstructure of the synthesized composites was examined by optical emission microscope and XRD. The Vicker’s microhardness test was performed on the composite specimens from base of the cast. The synthesized MMCs were found to have increased tensile strength, hardness, increased ultimate strength. The density of MMCs was observed to be decreased. This study indicates that RHA can be used as reinforcement material to synthesize light weight composites with increased hardness, tensile strength, Young’s modulus for various industrial applications.


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


2020 ◽  
Vol 21 (1) ◽  
pp. 24
Author(s):  
Nahar Cahyandaru ◽  
Endang Tri Wahyuni ◽  
Nuryono Nuryono

A study to improve the performance of andesite mortar and rock consolidated with tetraethylorthosilicate (TEOS) sol and a solvent of ethanol in the presence of titanium tetraisopropoxyde (TTIP) and silica particles has been conducted. The improvements include minimizing the shrinkage using silica particles from rice husk ash, rheological property suitability of the consolidant, and mechanical properties of the consolidated mortar and rock. The effect of TTIP concentration, ethanol volume, and addition of the silica particles on rheological properties of TEOS-based consolidant, and also mechanical properties of the consolidated mortar and rock were evaluated. The results showed that the increase of TTIP content in the consolidant shortens the gelling time, and the weight percentage ratio of TTIP:TEOS:ethanol of 5%:55%:40% was the optimum composition for the consolidation. Consolidation of andesite block using that composition significantly increased the compressive strength up to 57.61% (0.58 kgf/mm2). The addition of 2% of silica particles into the consolidant decreased the gel shrinkage and increased the Young modulus of the mortar. The presence of water in the andesite matrix reduced the consolidation performance, and 0.5% was the maximum percentage of water content acceptable for the consolidation.


2016 ◽  
Vol 869 ◽  
pp. 447-451 ◽  
Author(s):  
Oscar Olimpio Araújo Filho ◽  
Alexandre Douglas Araújo de Moura ◽  
Everthon Rodrigues de Araújo ◽  
Maurílio José dos Santos ◽  
Cezar Henrique Gonzalez ◽  
...  

Powder Metallurgy (PM) Techniques consists in a suitable technique to process composites materials. A specific PM technique of mechanical alloying developed to produce new materials in the solid state is a consolidated route to obtain aluminum alloys metal matrix composites. Aluminum alloys metal matrix composites allies the good properties of aluminum and its alloys but with poor mechanical properties and the reinforcement of ceramics phases which add better mechanical properties to these alloys. The research of this materials processing by PM techniques presented new materials with improved properties. In this work an AA1100 aluminum alloy was reinforced by particulate silicon carbide and alumina types of ceramic phases. The powders were mixed and then processed by mechanical alloying in a SPEX vibratory type mill. Then the powders obtained were compacted and vacuum sintered. The sintered composites were characterized by means of Scanning Electron Microscopy (SEM) plus Energy Dispersive Spectroscopy (EDS) and Vickers hardness (HV) tests to evaluate the mechanical behavior.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Azim Ataollahi Oshkour ◽  
Sumit Pramanik ◽  
Seyed Farid Seyed Shirazi ◽  
Mehdi Mehrali ◽  
Yat-Huang Yau ◽  
...  

This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young’s modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.


2012 ◽  
Vol 626 ◽  
pp. 738-742
Author(s):  
M. Marina ◽  
K. Alir ◽  
W. Rahman ◽  
Z. Nooraizedfiza ◽  
Mohd Asri Selamat ◽  
...  

This study is focused on fabricating and characterizing iron (Fe) composites prepared by powder metallurgy route reinforced with varying weight of Yttria (Y2O3). Composites were prepared based on 5 wt. % to 15 wt. % of reinforcement powder with particle size ranging from 1-10µm. Pure Fe matrix composites were also prepared for comparison purpose. This paper will report the microstructure, bulk density and micro hardness values of the composites. Powder characterization and microstructures of the composites were examined using Scanning Electron Microscope (SEM) which indicated homogenous distribution of reinforcement particles in the metal matrix. Bulk density of the composites was calculated using standard Archimedean method showing decreasing values as the weight percentage of Y2O3 increases. Micro-hardness was measured using micro-Vickers hardness instrument. The data obtained shows that the Fe-Y2O3 composites samples possessed superior hardness value with the increasing quantity of reinforcement compared to the unreinforced Fe composite.


Abstract: In the present research work, liquid state technique is employed to prepare the LM4/RHA/TiO2 composites containing four different mass proportion of RHA and TiO2. The weight proportion of reinforcements ie RHA-1,3&5 and TiO2 2,5&6 respectively. Hybrid composite with 3% of RHA and 6% of TiO2 showed the maximum Tensile strength of 298.37 N/mm².It is found that there is 37 % increase of tensile strength while addition of RHA and TiO2 to LM 24.The aluminium based particulate reinforced composite, the dislocations are generated during solutionizing due to thermal mismatch between the matrix and the ceramic reinforcement particles. It can be inferred that the tensile strength increased with an increase in the weight percentage of rice husk ash and TiO2. Because, the RHA particles act as barriers to the dislocations when taking up the load applied. It has been observed that with changing rate of TiO2 compressive quality increments from 478.83 to 653.79 MPa. The increase in compressive strength is mainly due to the decrease in the inter-particle spacing between the particulates since RHA and TiO2 are much harder than LM24. The presence of RHA and TiO2 resists deforming stresses and thus enhancing the compressive strength of the composite material. The maximum hardness value obtained for 5 wt.% of RHA and 6 wt.% of TiO2 .ie.117 BHN. It was observed that the hardness of the composite linearly increasing with the increase in weight fraction of the rice husk ash particles. This occurs due to increases in surface area of the matrix and thus the grain sizes are reduced. The presence of such hard surface area offers more resistance to plastic deformation which leads to increase hardness.. Keywords: LM4/RHA/TiO2, Tensile testing, Compression, Hardness, Rice husk.


2021 ◽  
Author(s):  
Gökhan Kaplan ◽  
Mohamed A.Salem Elmekahal

Abstract Sustainable solutions are investigated to reduce the environmental damage caused by greenhouse gases and CO2 emissions. Cement is a construction material responsible for greenhouse gases and CO2 emissions. Thus, CO2 emissions are reduced by using replacement materials such as rice husk ash instead of cement. This study investigated the durability and mechanical properties of lightweight and high-performance, sustainable cement-based composites. A foaming agent was used to reducing the unit weight of the mixtures. Also, pumice powder (PP) and rice husk ash (RHA) were used to improve cement-based composites' durability and mechanical properties. The density of mixtures varies between 1666–2205 kg/m3. The early age strength of the mixes using 12.5% RHA has increased. The mixtures' compressive strength (91-days) with 25% RHA and 50% PP was 46.6 MPa. As the PP content of mixes increased, drying shrinkage values increased. Expansions decrease as the initial compressive strength increases in mixtures exposed to sulfate. As RHA and PP's ratio increased, weight loss decreased in mixes exposed to HCl, while weight loss increased in mixes exposed to H2SO4. It was determined that the content of CH(OH)2 is important in mixes exposed to HCl, and impermeability is important in mixes exposed to H2SO4. It has been observed that the initial compressive strength is also important in mixes exposed to the freeze-thaw effect. As the foam content of the mixes increased, the compressive strength decreased while the drying shrinkage increased. As a result, using up to 25% RHA has increased the performance of cement-based composites.


Sign in / Sign up

Export Citation Format

Share Document