scholarly journals Evaluation on Mechanical Properties of Coated RHA-TIO2-LM24 Aluminium Alloy Composite

Abstract: In the present research work, liquid state technique is employed to prepare the LM4/RHA/TiO2 composites containing four different mass proportion of RHA and TiO2. The weight proportion of reinforcements ie RHA-1,3&5 and TiO2 2,5&6 respectively. Hybrid composite with 3% of RHA and 6% of TiO2 showed the maximum Tensile strength of 298.37 N/mm².It is found that there is 37 % increase of tensile strength while addition of RHA and TiO2 to LM 24.The aluminium based particulate reinforced composite, the dislocations are generated during solutionizing due to thermal mismatch between the matrix and the ceramic reinforcement particles. It can be inferred that the tensile strength increased with an increase in the weight percentage of rice husk ash and TiO2. Because, the RHA particles act as barriers to the dislocations when taking up the load applied. It has been observed that with changing rate of TiO2 compressive quality increments from 478.83 to 653.79 MPa. The increase in compressive strength is mainly due to the decrease in the inter-particle spacing between the particulates since RHA and TiO2 are much harder than LM24. The presence of RHA and TiO2 resists deforming stresses and thus enhancing the compressive strength of the composite material. The maximum hardness value obtained for 5 wt.% of RHA and 6 wt.% of TiO2 .ie.117 BHN. It was observed that the hardness of the composite linearly increasing with the increase in weight fraction of the rice husk ash particles. This occurs due to increases in surface area of the matrix and thus the grain sizes are reduced. The presence of such hard surface area offers more resistance to plastic deformation which leads to increase hardness.. Keywords: LM4/RHA/TiO2, Tensile testing, Compression, Hardness, Rice husk.

Author(s):  
Musaib Bashir Dar

Abstract: In this developing era concrete and cement mortar are widely used by the construction industry, with this development. Large number of industrial wastes are generated and if these wastes are not properly used it will create severe problems, keeping the environment in mind, concrete engineers are trying to find some alternative materials which will not only replaces the cement content but also improves strength of concrete. As we also know that during the manufacturing of cement large amount of Co2 is released into the environment, but if we use such material that will replace the quantity of cement content therefore indirectly, we are contributing towards the prevention of our planet from global warming and other pollutions. Also, in this research work the Rice Husk Ash is used. the rice husk ash obtained from the rice processing units, by adding this product with concrete, not only replaces the cement content but also increases the strength of concrete like compressive strength etc. The Rice husk ash was incorporated with concrete with varying percentages of 2.5% ,5% ,7.5%, & 10%. the proper codal precautions were followed during the manufacture of concrete cubes of 150x150x150mm. it was concluded that the strength of concrete increased by incorporated the rice husk ash. Keywords: Concrete, RHA, Compressive strength, Industrial wastes, Cement etc


2018 ◽  
Vol 195 ◽  
pp. 01024
Author(s):  
Muhammad Rizqi ◽  
Hernu Suyoso ◽  
Gati Annisa Hayu

The use of concrete as the main material in the construction does not mean it has no weaknesses. The brittle, low-density concrete properties make it collapse unexpectedly. In this work, a concrete innovation was performed to increase the compressive strength by the addition of rice husk ash as cement substitution that contains 92.31% of SiO2 and by the addition of banana tree bark. The proportion of rice husk ash used was obtained from preliminary tests to determine the proportion of rice husk ash by 5%, 7%, 10%, 12% and 15% of the cement’s weight. The result of the proportion which yielded the optimum concrete compressive strength by 24.4 MPa in the proportion of rice husk ash by 7%, then was made with the same ash content with banana tree bark fiber variation 0%; 1.5%; 2% and 3%. The Result of the test concluded that the addition of banana tree bark fiber can decrease the compressive strength and tensile strength of concrete because it is caused by the fibers that make hard concrete become solid. However, for all proportions of fiber, it still qualifies as the minimum tensile strength to be achieved i.e. 8% of the compressive strength of the plan.


2020 ◽  
Vol 10 (2) ◽  
pp. 5402-5405 ◽  
Author(s):  
N. Bheel ◽  
M. A. Jokhio ◽  
J. A. Abbasi ◽  
H. B. Lashari ◽  
M. I. Qureshi ◽  
...  

Cement production involves high amounts of energy consumption and carbon dioxide emissions. Pakistan is facing a serious energy crisis and cement’s cost is increasing. In addition, landfilling of potential concrete components can lead to environmental degradation. The use of waste as cement replacement not only reduces cement production cost by reducing energy consumption, but it is also environmentally friendly. The purpose of this study is to analyze the characteristics of concrete by partially replacing cement with Rice Husk Ash (RHA) and Fly Ash (FA). This study is mainly focused on the performance of concrete conducting a slump test, and investigating indirect tensile and compressive strength. Cement was replaced with RHA and FA by 5% (2.5% RHA + 2.5% FA), 10% (5% RHA + 5% FA), 15% (7.5% RHA + 7.5% FA) and 20% (10% RHA+10% FA) by weight. Ninety concrete samples were cast with mix proportions of 1:2:4 and 0.55 water/cement ratio. Cube and cylindrical samples were used for measuring compressive and split tensile strength respectively, after 7 and 28 days. The results showed that after 28 days, the 5% RHA+5% FA sample’s compressive strength was enhanced by 16.14% and its indirect tensile strength was improved by 15.20% compared to the conventional sample. Moreover, the sample’s slump value dropped as the content of RHA and FA increased.


2015 ◽  
Vol 1119 ◽  
pp. 234-238 ◽  
Author(s):  
Meena Laad ◽  
Vijaykumar S. Jatti ◽  
Satyendra Yadav

The excellent mechanical properties of Aluminium Metal Matrix Composites find applications in a variety of engineering applications in the automotive, aerospace and heavy machinery industries. This study aims at synthesis and characterization of Al 64430 reinforced with SiC particles and Rice Husk Ash (RHA). Rice husk ash is an agricultural waste which is produced in millions of tons worldwide. Aluminium was used as the base metal. With liquid metallurgy technique the metal matrix composites were prepared. The MMCs were synthesized with 3 % weight percentage RHA in Al metal matrix and the mechanical properties such as hardness, tensile strength and structural properties of MMCs were studied. The microstructure of the synthesized composites was examined by optical emission microscope and XRD. The Vicker’s microhardness test was performed on the composite specimens from base of the cast. The synthesized MMCs were found to have increased tensile strength, hardness, increased ultimate strength. The density of MMCs was observed to be decreased. This study indicates that RHA can be used as reinforcement material to synthesize light weight composites with increased hardness, tensile strength, Young’s modulus for various industrial applications.


2018 ◽  
Vol 144 ◽  
pp. 02002
Author(s):  
Y. M. Shivaprakash ◽  
Anunoy Sarkar ◽  
Sunit Jha ◽  
Muktesh Singh ◽  
Shachin Bangera

In this research work Aluminium alloy with Cu (4.5%) as the major alloying element is used as the matrix in which SiC and Rice Husk Ash (RHA) are dispersed to develop a hybrid composite. The dispersion is done by the motorized stir casting arrangement. The composite is fabricated by varying the proportions of the reinforcements in the base alloy. The composite specimens were tested for density changes, hardness and the wear. The microstructure images showed a uniform dispersion of the reinforcements in the matrix and this resulted in higher strength to weight ratio. The increase in strength of the composite is probably attributed to the increase in the dislocation density. Also, the abrasive wear resistance of the produced composite is found to be superior as compared to the matrix alloy because of the hard-ceramic particles in the reinforcements.


2019 ◽  
Vol 9 (3) ◽  
pp. 4209-4212 ◽  
Author(s):  
N. Bheel ◽  
A. W. Abro ◽  
I. A. Shar ◽  
A .A. Dayo ◽  
S. Shaikh ◽  
...  

In this research, rice husk ash (RHA) was used as a partial substitute for cement in concrete to reduce its cost, and alternative processing methods using agricultural/industrial waste were found. The main objective of this study was to determine the fresh (flowability) and hardened (splitting tensile strength and compressive strength) concrete properties using RHA at 0%, 5%, 10%, 15% and 20% by weight. A total of 90 concrete samples (45 cubes and 45 cylinders) were prepared and cured on 7, 14, and 28 days to the design of target strength 28N/mm2, and ultimately, these concrete specimens were tested on UTM. Three concrete specimens were cast for each proportion and ultimately the average of the three concrete samples was taken as the final result. The flowability of fresh concrete decreases with increasing content of RHA in concrete. The results showed that the compressive and tensile strength of the concrete specimens increased by 11.8% and 7.31%, respectively by using 10% RHA at 28 days curing.


2018 ◽  
Vol 13 (4) ◽  
pp. 447-474 ◽  
Author(s):  
Ali Ghorbani ◽  
Maysam Salimzadehshooiili ◽  
Jurgis Medzvieckas ◽  
Romualdas Kliukas

In this paper, stress-strain behaviour of sand-clay mixture stabilised with different cement and rice husk ash percentages, and reinforced with different polypropylene fibre lengths are evaluated. Mixtures are widely used in road construction for soil stabilisation. It is observed that replacing half of the cement percentage (in high cement contents) with rice husk ash will result in a higher unconfined compressive strength. In addition, the presence of 6 mm polypropylene fibres will help to increase the unconfined compressive strength of stabilised samples, while larger fibres cause reverse behaviour. In addition, introducing a new index for assessing the effect of curing days. Curing Improvement Index it is obtained that larger fibres show higher Curing Improvement Index values. Results gained for the effects of curing days, and fibre lengths are further discussed and interpreted using Scanning Electron Microscopy photos. Based on the conducted Unconfined Compressive Strength, Indirect Tensile Strength, and Flexural Strength tests and using evolutionary polynomial regression modelling, some simple relations for prediction of unconfined compressive strength, indirect tensile strength, and flexural strength of cement-rice husk ash stabilised, and fibre reinforced samples are presented. High coefficients of determination of developed equations with experimental data show the accuracy of proposed relationships. Moreover, using a sensitivity analysis based on Cosine Amplitude Method, cement percentage and the length of polypropylene fibres used to reinforce the stabilised samples are respectively reported as the most and the least effective parameters on the unconfined compressive strength of specimens.


2016 ◽  
Vol 9 (1) ◽  
pp. 29-33
Author(s):  
MB Hossain ◽  
KM Shaad ◽  
MS Rahman ◽  
P Bhowmik

This research was carried out to investigate various physical properties of Rice Husk Ash (RHA) and, some physical and mechanical properties of concrete incorporating RHA in different proportions. The concrete specimens were tested at 7, 21 and 28 days after curing. Test results revealed that the specific gravity of RHA was found lower than that of sand. The density of concrete containing RHA was recorded between 80-110 lb.ft-3, which is lower than conventional concrete. Water absorption was found increasing with the increase of RHA content in concrete specimens. There were significant variations in compressive strength values of concrete containing 5%, 10% and 20% volume of RHA. The compressive strength of 5% RHA specimen was 150-200% higher than that of other specimens. Hence, upto 5% replacement of RHA could be recommended for making normal lightweight concrete. The splitting tensile strength was about 9-10% of compressive strength. It was concluded that upto 5% RHA can be used effectively in making normal lightweight concrete. The higher percentage of RHA could be used in making non-structural concrete where the strength of concrete is not concerned.J. Environ. Sci. & Natural Resources, 9(1): 29-33 2016


2021 ◽  
Author(s):  
Khawaja Adeel Tariq ◽  
Muhammad Sohaib ◽  
Mirza Awais Baig

AbstractThis research work is related to the study of effects on properties of concrete having rice husk ash as cementitious supplementary materials. Total four mixes of concrete were done with varying percentages of rice husk as 6%, 12% and 18%. The tensile, flexural and compressive strengths that contain rice husk ash were determined by testing cubes, cylinders and beams. There was a replacement of 6%, 12% and 18% of rice husk ash in all mixes except the control mix. The concrete's flexural strength with rice husk ash increases at the beginning and at the later age (i.e., 28 days) similar to control mix; however, variation in compressive and splitting tensile strength is negligible. The optimum results are achieved with 6% replacement of cement with rice husk ash. Therefore, it was inferred that rice husk ash could be used as partial replacement of cement in concrete to produce economic concrete.


2018 ◽  
Vol 4 (5) ◽  
pp. 1019 ◽  
Author(s):  
Basheer Mohammed Salem Al-Ahdal ◽  
Li Bi Xiong ◽  
Rana Faisal Tufail

This paper for the first time investigates the workability, compressive and tensile strength of concrete containing Fly Ash, Rice Husk Ash and Waste Glass Powder. Seventy six cube specimen (150  150  150 mm were cast with different composition of Fly Ash, Rice Husk Ash ,Waste Glass Powder and steel fibers. The cubes were tested for axial compression and tensile tests. The research also investigated the effect of curing regime on the compressive and tensile strength of concrete cube specimen. The results revealed that the addition of 15 % Rice Husk Ash and 39% Fly Ash increased the workability of 25 % as compared to the controlled concrete. The sample containing 10 % Rice Husk Ash, 10% Waste Glass Powder and 39% micro silica produced worst workability as it decreased the workability up to 5 % of controlled concrete. The results for axial compressive strength shows that the addition of 15% Rice Husk Ash (RHA) and 39% of Fly Ash (FA) in concrete leads to the improvement of compressive strength by 14%. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to the improvement by 53.9 for compressive. The replacement  of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP ), 39 % of micro silica (MS) 3% steel fiber in concrete leads to the improvement by 37% for compressive strength. It was observed from the results of tensile strength that the samples containing 15% Rice Husk Ash (RHA) and 39 % of Fly Ash (FA) increased the tensile strength by 24% as compared to the controlled concrete. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to an increase of 20% as compared to the controlled ones. Also, the replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP), 39 % of micro silica (MS) 3% steel fiber increased the tensile strength by 40 % as compared to the controlled concrete sample. Finally, it was concluded that the replacement of 10% RHA, 39% micro Silica, 10% WG in concrete was found to be superior for increasing the mechanical properties of concrete.


Sign in / Sign up

Export Citation Format

Share Document