scholarly journals EMG BASED DIAGNOSIS OF MYOPATHY AND NEUROPATHY USING MACHINE LEARNING TECHNIQUES

Author(s):  
Anisha C. D ◽  
Arulanand N

Myopathy and Neuropathy are non-progressive and progressive neuromuscular disorders which weakens the muscles and nerves respectively. Electromyography (EMG) signals are bio signals obtained from the individual muscle cells. EMG based diagnosis for neuromuscular disorders is a safe and reliable method. Integrating the EMG signals with machine learning techniques improves the diagnostic accuracy. The proposed system performs analysis on the clinical raw EMG dataset which is obtained from the publicly available PhysioNet database. The two-channel raw EMG dataset of healthy, myopathy and neuropathy subjects are divided into samples. The Time Domain (TD) features are extracted from divided samples of each subject. The extracted features are annotated with the class label representing the state of the individual. The annotated features split into training and testing set in the standard ratio 70: 30. The comparative classification analysis on the complete annotated features set and prominent features set procured using Pearson correlation technique is performed. The features are scaled using standard scaler technique. The analysis on scaled annotated features set and scaled prominent features set is also implemented. The hyperparameter space of the classifiers are given by trial and error method. The hyperparameters of the classifiers are tuned using Bayesian optimization technique and the optimal parameters are obtained. and are fed to the tuned classifier. The classification algorithms considered in the analysis are Random Forest and Multi-Layer Perceptron Neural Network (MLPNN). The performance evaluation of the classifiers on the test data is computed using the Accuracy, Confusion Matrix, F1 Score, Precision and Recall metrics. The evaluation results of the classifiers states that Random Forest performs better than MLPNN wherein it provides an accuracy of 96 % with non-scaled Time Domain (TD) features and MLPNN outperforms better than Random Forest with an accuracy of 97% on scaled Time Domain (TD) features which is higher than the existing systems. The inferences from the evaluation results is that Bayesian optimization tuned classifiers improves the accuracy which provides a robust diagnostic model for neuromuscular disorder diagnosis.

2021 ◽  
Vol 10 (02) ◽  
pp. 07-11
Author(s):  
Kanakaveti Narasimha Dheeraj ◽  
Goutham. R. J ◽  
Arthi. L

Agriculture is said to be the backbone of the economy. Farmers toil hard with different kinds of crops to make good and healthy food for the country. There are more existing systems but uses outdated machine-learning techniques based on RNN( Recurrent neural network) which makes the process slower and more time-consuming. Here We are proposing a new CNN(Convolutional neural network ) based system which is fast and gives accurate results within seconds. CNN is power-efficient and is more suitable for real-time implementation. In this project, we use CNN algorithms which is very much better than the RNN algorithms used in the existing system.More parameters will be taken for the consideration of prediction in the proposed system. And we use Random Forest Regression, Multiple Linear Regression


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 01) ◽  
pp. 183-195
Author(s):  
Thingbaijam Lenin ◽  
N. Chandrasekaran

Student’s academic performance is one of the most important parameters for evaluating the standard of any institute. It has become a paramount importance for any institute to identify the student at risk of underperforming or failing or even drop out from the course. Machine Learning techniques may be used to develop a model for predicting student’s performance as early as at the time of admission. The task however is challenging as the educational data required to explore for modelling are usually imbalanced. We explore ensemble machine learning techniques namely bagging algorithm like random forest (rf) and boosting algorithms like adaptive boosting (adaboost), stochastic gradient boosting (gbm), extreme gradient boosting (xgbTree) in an attempt to develop a model for predicting the student’s performance of a private university at Meghalaya using three categories of data namely demographic, prior academic record, personality. The collected data are found to be highly imbalanced and also consists of missing values. We employ k-nearest neighbor (knn) data imputation technique to tackle the missing values. The models are developed on the imputed data with 10 fold cross validation technique and are evaluated using precision, specificity, recall, kappa metrics. As the data are imbalanced, we avoid using accuracy as the metrics of evaluating the model and instead use balanced accuracy and F-score. We compare the ensemble technique with single classifier C4.5. The best result is provided by random forest and adaboost with F-score of 66.67%, balanced accuracy of 75%, and accuracy of 96.94%.


Author(s):  
Ramesh Ponnala ◽  
K. Sai Sowjanya

Prediction of Cardiovascular ailment is an important task inside the vicinity of clinical facts evaluation. Machine learning knowledge of has been proven to be effective in helping in making selections and predicting from the huge amount of facts produced by using the healthcare enterprise. on this paper, we advocate a unique technique that pursuits via finding good sized functions by means of applying ML strategies ensuing in improving the accuracy inside the prediction of heart ailment. The severity of the heart disease is classified primarily based on diverse methods like KNN, choice timber and so on. The prediction version is added with special combos of capabilities and several known classification techniques. We produce a stronger performance level with an accuracy level of a 100% through the prediction version for heart ailment with the Hybrid Random forest area with a linear model (HRFLM).


Author(s):  
Giovanni Semeraro ◽  
Pierpaolo Basile ◽  
Marco de Gemmis ◽  
Pasquale Lops

Exploring digital collections to find information relevant to a user’s interests is a challenging task. Information preferences vary greatly across users; therefore, filtering systems must be highly personalized to serve the individual interests of the user. Algorithms designed to solve this problem base their relevance computations on user profiles in which representations of the users’ interests are maintained. The main focus of this chapter is the adoption of machine learning to build user profiles that capture user interests from documents. Profiles are used for intelligent document filtering in digital libraries. This work suggests the exploiting of knowledge stored in machine-readable dictionaries to obtain accurate user profiles that describe user interests by referring to concepts in those dictionaries. The main aim of the proposed approach is to show a real-world scenario in which the combination of machine learning techniques and linguistic knowledge is helpful to achieve intelligent document filtering.


RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61624-61630 ◽  
Author(s):  
N. S. Hari Narayana Moorthy ◽  
Silvia A. Martins ◽  
Sergio F. Sousa ◽  
Maria J. Ramos ◽  
Pedro A. Fernandes

Classification models to predict the solvation free energies of organic molecules were developed using decision tree, random forest and support vector machine approaches and with MACCS fingerprints, MOE and PaDEL descriptors.


2020 ◽  
Author(s):  
Sonam Wangchuk ◽  
Tobias Bolch

<p>An accurate detection and mapping of glacial lakes in the Alpine regions such as the Himalayas, the Alps and the Andes are challenged by many factors. These factors include 1) a small size of glacial lakes, 2) cloud cover in optical satellite images, 3) cast shadows from mountains and clouds, 4) seasonal snow in satellite images, 5) varying degree of turbidity amongst glacial lakes, and 6) frozen glacial lake surface. In our study, we propose a fully automated approach, that overcomes most of the above mentioned challenges, to detect and map glacial lakes accurately using multi-source data and machine learning techniques such as the random forest classifier algorithm. The multi-source data are from the Sentinel-1 Synthetic Aperture Radar data (radar backscatter), the Sentinel-2 multispectral instrument data (NDWI), and the SRTM digital elevation model (slope). We use these data as inputs for the rule-based segmentation of potential glacial lakes, where decision rules are implemented from the expert system. The potential glacial lake polygons are then classified either as glacial lakes or non-glacial lakes by the trained and tested random forest classifier algorithm. The performance of the method was assessed in eight test sites located across the Alpine regions (e.g. the Boshula mountain range and Koshi basin in the Himalayas, the Tajiks Pamirs, the Swiss Alps and the Peruvian Andes) of the word. We show that the proposed method performs efficiently irrespective of geographic, geologic, climatic, and glacial lake conditions.</p>


2020 ◽  
Author(s):  
Arnaud Adam ◽  
Isabelle Thomas

<p>Transport geography has always been characterized by a lack of accurate data, leading to surveys often based on samples that are spatially not representative. However, the current deluge of data collected through sensors promises to overpass this scarcity of data. We here consider one example: since April 1<sup>st</sup> 2016, a GPS tracker is mandatory within each truck circulating in Belgium for kilometre taxes. Every 30 seconds, this tracker collects the position of the truck (as well as some other information such as speed or direction), leading to an individual taxation of trucks. This contribution uses a one-week exhaustive database containing the totality of trucks circulating in Belgium, in order to understand transport fluxes within the country, as well as the spatial effects of the taxation on the circulation of trucks.</p><p>Machine learning techniques are applied on over 270 million of GPS points to detect stops of trucks, leading to transform GPS sequences into a complete Origin-Destination matrix. Using machine learning allows to accurately classify stops that are different in nature (leisure stop, (un-)loading areas, or congested roads). Based on this matrix, we firstly propose an overview of the daily traffic, as well as an evaluation of the number of stops made in every Belgian place. Secondly, GPS sequences and stops are combined, leading to characterise sub-trajectories of each truck (first/last miles and transit) by their fiscal debit. This individual characterisation, as well as its variation in space and time, are here discussed: is the individual taxation system always efficient in space and time?</p><p>This contribution helps to better understand the circulation of trucks in Belgium, the places where they stopped, as well as the importance of their locations in a fiscal point of view. What are the potential modifications of the trucks routes that would lead to a more sustainable kilometre taxation? This contribution illustrates that combining big-data and machine learning open new roads for accurately measuring and modelling transportation.</p>


Sign in / Sign up

Export Citation Format

Share Document