scholarly journals Performance Evaluation of the Effect of Sodium Hydroxide on Geotechnical Properties of Lateritic Soil for Rural Road Construction

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Ibrahim I Abdulkarim ◽  
Sa’eed Y Umar

This study explored the potentials of sodium hydroxide (NaOH) for the improvement of the properties of lateritic soil (LS) intended for use as construction material for rural roads in the North-eastern part of Nigeria. The soil was classified as A-6(13) and CL according to the American Association of State Highway and Transport Officials (AASHTO M 145-2012) and the Unified Soil Classification System (ASTM D 2487-2011). The soil is treated to evaluate the effectiveness of NaOH in treating lateritic soil with 1, 3 and 7 molar concentration of NaOH and compacted using two methods of compaction, the British Standard Light (BSL) and British Standard Heavy (BSH). Unconfined compressive strength (UCS) and Californian bearing ratio (CBR) tests were conducted on the compacted specimens. The results obtained show a general improvement in the engineering properties of the soil with increase in molar concentration of NaOH, particularly, when compacted at the BSH energy level. The maximum 7 days UCS values of 909 kN/m2 and 1106 kN/m2 were obtained at 7 molar concentration for the BSL and BSH energy levels. These values are within the range of 750 – 1500 kN/m2 UCS value specified by the Nigerian General Specification (2013) for sub-base materials. In the case of the CBR, at 3 and 7 molar concentrations for BSH effort, CBR values of 33% and 38% were recorded while 34% CBR value was recorded at 7 molar concentration for BSL effort, these values also met the minimum requirement of 30% CBR specified by the Nigerian General Specification for sub-base construction.Keywords— Lateritic, Sodium hydroxide, Soil, Rural roads. 

2019 ◽  
Vol 25 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Johnson R. Oluremi ◽  
Adrian O. Eberemu ◽  
Stephen T. Ijimdiya ◽  
Kolawole J. Osinubi

ABSTRACTInherent variability in engineering properties of lateritic soil in relation to its plasticity, permeability, strength, workability, and natural moisture content, has made it an unpredictable material for use in civil engineering works, resulting in the need for its treatment by stabilization. A lateritic soil classified as A-6(6) and CL, according to American Association of State Highway and Transportation Officials and Unified Soil Classification System of ASTM (2011), was treated with up to 10 percent waste wood ash (WWA). Compaction was carried out using four energies, namely, reduced British Standard light, British Standard light (BSL), West African Standard, and British Standard heavy, on samples, which were then examined for hydraulic conductivity, volumetric shrinkage, and unconfined compressive strength as major criteria for use as liner and for the development of acceptable zones. Specimens with 4 percent WWA content compacted with a minimum BSL energy satisfied the maximum hydraulic conductivity (k) value of 1 × 10−9 m/s, maximum volumetric shrinkage strain of 4 percent, and minimum unconfined compressive strength value of 200 kN/m2 required for use as liner in engineered landfills. The overall acceptable zone was enlarged for up to 4 percent WWA content, thereby accommodating higher moulding water content, but the minimum compactive effort required to achieve it became reduced. The beneficial treatment of lateritic soil with up to 4 percent WWA will perform satisfactorily as liner and covers in waste containment application and will minimize the pollution and environmental impact of wood waste disposal.


2021 ◽  
Vol 80 (3) ◽  
pp. 1963-1980
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

AbstractRock aggregates constitute the enormous volume of inert construction material used around the globe. The petrologic description as igneous, sedimentary, and metamorphic types establishes the intrinsic formation pattern of the parent rock. The engineering properties of these rocks vary due to the differences in the transformation process (e.g. hydrothermal deposits) and weathering effect. The two most common mechanical tests used to investigate the performance of aggregates are the Los Angeles (LA) and micro-Deval (MD) tests. This study reviewed the geological parameters (including mineralogy, grain and crystal size, grain shape, and porosity) and the relationship to Los Angeles and micro-Deval tests. It was found that high content of primary minerals in rocks (e.g. quartz and feldspar) is a significant parameter for performance evaluation. Traces of secondary and accessory minerals also affect the performance of rocks, although in many cases it is based on the percentage. Furthermore, some studies showed that the effect of mineralogic composition on mechanical strength is not sufficient to draw final conclusions of mechanical performance; therefore, the impact of other textural characteristics should be considered. The disposition of grain size and crystal size (e.g. as result of lithification) showed that rocks composed of fine-grain textural composition of ≤ 1 mm enhanced fragmentation and wear resistance than medium and coarse grained (≥ 1 mm). The effect of grain shape was based on convex and concave shapes and flat and elongated apexes of tested samples. The equidimensional form descriptor of rocks somehow improved resistance to impact from LA than highly flat and elongated particles. Lastly, the distribution of pore space investigated by means of the saturation method mostly showed moderate (R = 0.50) to strong (R = 0.90) and positive correlations to LA and MD tests.


2015 ◽  
Vol 72 (3) ◽  
Author(s):  
Siaw Yah Chong ◽  
Khairul Anuar Kassim

Marine clay is a problematic construction material, which is often encountered in Malaysian coastal area. Previous researchers showed that lime stabilization effectively enhanced the engineering properties of clay. For soft clay, both strength and consolidation characteristics are equally important to be fully understood for design purpose. This paper presented the effect of lime on compaction, strength and consolidation characteristics of Pontian marine clay. Compaction, unconfined compression, direct shear, Oedometer and falling head permeability tests were conducted on unstabilized and lime stabilized samples at various ages. Specimens were prepared by compaction method based on 95 percent maximum dry density at the wetter side of compaction curve. It was found that lime successfully increased the strength, stiffness and workability of Pontian marine clay; however, the permeability was reduced. Unconfined compressive strength of stabilized soil was increased by 49 percent at age of 56 days whereas compressibility and permeability was reduced by 48 and 67 percent, respectively. From laboratory tests, phenomenon of inconsistency in engineering characteristics was observed for lime stabilized samples below age of 28 days. This strongly proved that lime stabilized soil underwent modification phase before stabilization phase which provided the long term improvement.


2020 ◽  
Vol 10 (21) ◽  
pp. 7726
Author(s):  
An Thao Huynh ◽  
Quang Dang Nguyen ◽  
Qui Lieu Xuan ◽  
Bryan Magee ◽  
TaeChoong Chung ◽  
...  

Geopolymer concrete offers a favourable alternative to conventional Portland concrete due to its reduced embodied carbon dioxide (CO2) content. Engineering properties of geopolymer concrete, such as compressive strength, are commonly characterised based on experimental practices requiring large volumes of raw materials, time for sample preparation, and costly equipment. To help address this inefficiency, this study proposes machine learning-assisted numerical methods to predict compressive strength of fly ash-based geopolymer (FAGP) concrete. Methods assessed included artificial neural network (ANN), deep neural network (DNN), and deep residual network (ResNet), based on experimentally collected data. Performance of the proposed approaches were evaluated using various statistical measures including R-squared (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Sensitivity analysis was carried out to identify effects of the following six input variables on the compressive strength of FAGP concrete: sodium hydroxide/sodium silicate ratio, fly ash/aggregate ratio, alkali activator/fly ash ratio, concentration of sodium hydroxide, curing time, and temperature. Fly ash/aggregate ratio was found to significantly affect compressive strength of FAGP concrete. Results obtained indicate that the proposed approaches offer reliable methods for FAGP design and optimisation. Of note was ResNet, which demonstrated the highest R2 and lowest RMSE and MAPE values.


2015 ◽  
Vol 9 (4) ◽  
pp. 468-476 ◽  
Author(s):  
Salahudeen, A.B. ◽  
◽  
Ochepo, J. ◽  

2014 ◽  
Vol 584-586 ◽  
pp. 1282-1288 ◽  
Author(s):  
Sung Won Yoo ◽  
Sang Hwa Jung ◽  
Seung Jun Kwon

HVFAC (High Volume Fly Ash Concrete) is an attractive construction material with cost benefit and reduced CO2emission. In this paper engineering properties such as compressive and shear strength are evaluated and their characteristics are investigated. For this work HVFAC with FA (Fly Ash) replacement ratio of 35% and 50% are prepared and strength (compressive, shear, and bond) are measured with basic parameters like elasticity and ultimate strain. Test results are compared with conventional predictions from Korea Structural Code and their applicabilities are evaluated. In bond strength and elasticity in HVFAC are evaluated to need reasonable coefficients for HVFAC design.


Expansive clay soils are geotechnically problematic in nature as they possess less shear strength, high compressibility and low permeability. This research work was carried out with a view to improve index and engineering properties of expansive soil by stabilizing it with industrial wastes and geopolymers. The industrial wastes such as fly ash, silica fume and sodium-hydroxide were used for the stabilization of expansive soil. the virgin clay soil was tested for its index properties, compaction characteristics and shear strength determination. the stabilization of clay is made by adding and mixing those materials by varying its percentage. In the stabilization of soil with sodium hydroxide, an attempt has been made to study the effect of its molarity on the various properties of the soil. The clay soil stabilized with various materials was also tested for the same properties and that results were compared with that of virgin soil to find the effect of stabilization.


2017 ◽  
Vol 3 (8) ◽  
pp. 610 ◽  
Author(s):  
Sadam Hussain

Swelling of expansive clays is one of the great hazards, a foundation engineer encounters. Each year expansive soils cause severe damage to residences, buildings, highways, pipelines, and other civil engineering structures. Strength and deformation parameters of soils are normally related to soil type and moisture. However, surprisingly limited focus has been directed to the compaction energy applied to the soil. Study presented herein is proposed to examine the effect of varying compaction energy of the engineering properties i.e. compaction characteristics, unconfined compressive strength, California bearing ratio and swell percentage of soil. When compaction energy increased from 237 KJ/m3 to 1197 KJ/m3, MDD increased from 1.61 g/cm3 to 1.75 g/cm3, OMC reduced from 31.55 percent to 21.63 percent, UCS increased from 110.8 to 230.6 KPa, and CBR increased from mere 1 percent to 10.2 percent. Results indicate substantial improvement in these properties. So, compacting soil at higher compaction energy levels can provide an effective approach for stabilization of expansive soils up to a particular limit. But if the soil is compacted more than this limit, an increase in swell potential of soil is noticed due to the reduction in permeability of soil.


Author(s):  
I. O Ameen

This study investigated the impact of compactive efforts on A-7-5 lateritic soil stabilized with Bamboo Leaf Ash (BLA) mixed with lime. Preliminary tests were conducted on the soil sample for identification and classification. Compaction tests (using British Standard Light (BSL), British Standard Heavy (BSH) and West Africa Standard (WAS) compactive efforts) were performed on the sample in both natural and stabilized states by incorporating 2, 4, 6 and 8% Bamboo Leaf Ash mixed together with 1, 2, and 3% lime by weight of soil sample. Maximum dry density (MDD) increased to 1766 kg/m3 at 3% lime and 6% BLA, 1818 kg/m3 at 3% lime and 8% BLA and 1866 kg/m3 at 3% lime and 2% BLA while the optimum moisture content decreased to 12.70% at 3% and lime 8% BLA, 11.40% at 2% lime 6% BLA and 11.12% at 3% lime and 2% BLA for BSL, WAS and BSH, respectively. Based on these findings, the addition of lime-BLA enhanced the soil and has a promising prospect for stabilization of lateritic soil.


2018 ◽  
Vol 1 (2) ◽  
pp. 26-42
Author(s):  
Pius Rodney Fernando ◽  
T. Hamigah ◽  
S. Disne ◽  
G. G. A. K. Wickramasingha ◽  
A. Sutharshan

The main objective of the article is to reduce the quantity of sand with the natural agro waste materials and the performance of sawdust-sand-cement stabilized using sawdust (SD) and cement which investigates the water retention (WR), compressive quality (CQ) and flexural quality (FQ) of the sawdust-sand-cement blocks to find out the conceivable utilization of sawdust as an incomplete substitution of sawdust in blocks creation. For this purpose, various combinations of sawdust, sand, cement, water-content and drying time to create testing blocks. The compressive and flexural qualities of the sawdust-sand-cement blocks were determined using a universal testing machine, as they just cracked due to compression. The greatest compressive and flexural strength of 193 kg.cm-2 and 2.34 kg.cm-2 were recorded at 0% doping at 28th day. However, the most extreme estimation of 106 kg.cm-2 and 1.29 kg.cm-2 for 15% doping is discovered reasonable and prescribed for building development having been achieved at a 28th days compressive and flexural quality which is less than the Sri Lankan Standards (SLS). However, the 15% doping blocks have water retention of 12.4% at 28th days that is the minimum requirement for the block according to the Sri Lankan Standards (SLS). Therefore, these sawdust-sand-cement blocks were found to be weak for medium and heavy building constructions, because of its low density, light weight, low strength. Thus, these sawdust-sand-cement blocks can be used for interior wall partition and decorations. The sawdust-sand-cement block manufacturing procedure being simple can be undertaken as rural entrepreneurship by unskilled labors of developing countries.


Sign in / Sign up

Export Citation Format

Share Document