Improving Energy Efficiency of the Hydraulic Power Systems in Heavy Machinery

2020 ◽  
Vol 22 (1-2) ◽  
pp. 72-78
Author(s):  
Dejvid Anastasovski ◽  
◽  
Emil Zaev ◽  
Darko Babunski ◽  
Gerhard Rath ◽  
...  

The main goal of the research done in this paper is to examine possible improvements in energy efficiency of the hydraulic power systems and with this lower gas emission from working machinery. It is here given a brief explanation of the existing hydraulic systems putting special attention on a hydraulic system with separate meter-in and separate meter-out (SMISMO). While the aim of this research is to improve the hydraulic energy efficiency mainly using the SMISMO system, additional research on using those systems for simultaneous speed and pressure control of the cylinders is also observed. The results obtained through experimental studies will be used to further improve the hydraulic system. Further upgrade of this system is to design automated SCADA system for improved data acquisition and control the valves in servo systems.

Author(s):  
Etsujiro Imanishi ◽  
Satoshi Yonezawa ◽  
Naoki Sugano ◽  
Eiko Hirooka ◽  
Takahiro Kobayashi

Abstract A characteristic improvement method for dynamic simulation of a stiff mechanical system by adding mass is presented. Hydraulic systems with check valves and control valves on construction machinery exhibit piecewise-linear characteristics for hydraulic flow rate and spool stroke. The proposed improvement method involves no time delay in determining the mass by considering both eigenvalue distortion of the system and time response. This paper shows a practical application to the boom derricking system of a rough terrain crane, and demonstrates that this method is useful for dynamic simulation of hydraulic system including stiff piecewise-linear elements.


Author(s):  
A. V. Gritsenko ◽  
◽  
K. V. Glemba ◽  

Theoretical investigation with reasoning of petrol fuel combustion in the ambient and ozone medium was made. Methods of carrying out the experiment using the engine loading method due to application of power of mechanical losses of deactivated cylinders were worked out. Experimental studies envisage determination of influence of ozone additive into fuel air mix on the basic effective ICE performance, for this purpose cyclic fuel consumption parameter was used. After the analysis of ICE performance methods and control techniques, its condition was evaluated, for this purpose a compressor meter was used with preliminary pressurization of cylinders. During the experiment in order to load the engine its third and fourth cylinders were switched off. The results showed that the utmost fuel efficiency is found at crankshaft rotation values of 1450 and 3350 min-1, when cyclic fuel consumption rate has values of 1,35 and 1,27 mg/cycle respectively, which makes 7,4 and 7,0 % from identical indicators without ozonation of air mass at the same rotations. In general, the effect of fuel air mix ozonation makes it possible to develop target petrol-operated engine rotations at smaller fuel consumption rate, this way increasing its energy efficiency.


2012 ◽  
Vol 192 ◽  
pp. 360-364
Author(s):  
Xi Guang He ◽  
Ji Feng Xing ◽  
Jia Chen

In order to guarantee that the rudder hydraulic systems work normally, the rudder hydraulic system must supply constant-pressure fluid to it. In this article, the author had analyzed the relationship between the power of the hydraulic oil pump and its motor revs, and done researches on its controlling tactics. Next, the author deigned its controller and controlling system based on fuzzy-control theorem. This system could extend the life-span of the pump motor and save energy, and it can also be utilized in other engineering fields.


2013 ◽  
Vol 401-403 ◽  
pp. 1590-1595 ◽  
Author(s):  
Li Zhang

This article analyses the use requirement of construction machinery, introduce the main features of typical construction machinery hydraulic system, derived power control modes of hydraulic system form hydraulic power form, compares the advantages and disadvantages of each power control mode, gives the optimization solutions, at last, sum up the full text of the construction machinery hydraulic power and control modes and prospect of the hydraulic system to precision control.


2019 ◽  
Vol 8 (4) ◽  
pp. 3841-3845 ◽  

Electro-hydraulic systems (EHS) are widely used in industrial applications due to the high-power density and accuracy. However, EHS are highly nonlinear which makes its modelling and control aspects a complex process. In this paper, we present the modelling and position control for an electro-hydraulic system (EHS). The mathematical modelling is carried out considering the non-linearities like friction, discharge coefficient and load mass present in the system. A back-stepping control scheme is developed for maintaining the accuracy in the position control. The closed-loop stability of the proposed control system is analyzed with Lyapunov’s theory. The performance of the control system under the effect of bounded external uncertainties is validated with simulation study. The study indicates that the proposed controller gives an effective motion control in presence of the system uncertainties.


2021 ◽  
Author(s):  
Christian Petersen ◽  
Ola Strand ◽  
Espen Johansen ◽  
Dag Almar Hansen ◽  
Dag Ketil Fredheim ◽  
...  

Abstract Pressure control have been going through steps of evolution. In the highlight of safety, reliability and control, the systems have been sturdy withstanding massive pressure and environmental impact to last the time of estimated life of well. Design have been emphasizing on sturdiness rather than intelligence and autonomy. Time moves on, sophistication levels rise in all parts of our industry. Sustainability and lower environmental impact of solutions grow from the young into business planning and democratic policies. Control lines of hydraulic systems posed risks to the environment as well as being costly in structure and maintenance. Condition monitoring helped ensure better maintenance planning and lowered the risk of breakdown, but still left a lot to be desired reaching for self-contained, self learning systems with low installation and maintenance costs, yet the safest approach. The next steps were taken towards electrification and digitization of pressure control systems, making short and undetermined strides over almost two decades. Still, the standards are not following the pace of technological progress. And when someone dares to pilot or demonstrate modern technology applied, the installations and operational procedures of the systems still need expensive distributed lines of power, of signals and control systems to ensure a swift and safe operation. The fly-by-wire principle applied in oil & gas is the operate-by-costly-technology-and-environmental-impact-lines. With the introduction of new and breaking technology in energy harvesting and storage, the playing field opens up towards fully automated systems with no need for expensive power lines or hydraulic control lines. The safety will be taken care of also off-grid, fully digitized. Should cabling of instrument signals be damaged, the system of tomorrow will still be up to par with the Safety Integrity Levels needed. New super-capacitors with an extra dense storage capacity being developed in partnership between the industry and the University of southeast Norway combined with an extremely low energy consuming actuation system with the fastest failsafe mechanism ever will ensure safety in all modes of operation, even with all lines down or consumed by flames. The paper aims to show how the technology works and underline why it will take a place in the future of well control and production.


2012 ◽  
Vol 155-156 ◽  
pp. 540-544
Author(s):  
Hong Lin Zhao ◽  
Jia Yu ◽  
Yuan Long Yue ◽  
Song Li ◽  
Bu Quan Guo

Onshore hydraulic systems are not generally applied in subsea production control system,so how to design a special needed hydraulic system for subsea X-tree has been one of the hot research questions.Several specific hydraulic components were analyzed, such as hydraulic power unite,umbilical,subsea control model,hydraulic control valve and valve actuator, and then corresponding hydraulic schematic which can meet the requirements of subsea X-tree is presented.


2014 ◽  
Vol 931-932 ◽  
pp. 403-407
Author(s):  
Weerapong Chanbua ◽  
Unnat Pinsopon

At the present time, researchers try to find alternative fluids for being used as lubricants or hydraulic fluids that are biodegradable and environmental friendly. In this study, Refined-Bleached-Deodorized (RBD) palm olein was investigated whether it is such a potential candidate. RBD palm olein could be easily acquired since it is of the type used as cooking oil. The physical properties of both conventional hydraulic oil and RBD palm olein were tested and compared by an accredited laboratory. The performance of the hydraulic systems when using both fluids as working mediums were also tested and compared. The experimental results show that temperature significantly affected the performance of the hydraulic system when using conventional hydraulic oil, whereas the performance of the hydraulic system when using RBD palm olein barely changed with temperatures. At the temperatures below 60 °C, the RBD palm olein yielded less flow rate and less energy efficiency. However, for the temperatures above 60 °C, the RBD palm olein yielded slightly more flow rate and slightly more energy efficiency. It can be confirmed from this study that RBD palm olein can be used as an alternative hydraulic fluid.


2018 ◽  
Vol 25 (4) ◽  
pp. 114-128 ◽  
Author(s):  
Grzegorz Skorek

Abstract Energy efficiency of hydrostatic transmissions, and especially efficiencies of drives with motor speed controlled by throttle, as well as efficiency of hydraulic servomechanisms can in fact be higher than the efficiency values most frequently given by the respective literature in this field. With the progress achieved in recent years in the development of hydraulic systems it is becoming necessary to develop methods for precise energy efficiency calculation of such systems. It is difficult to imagine that more and more, better and better machines and control elements could be used without the possibility of a mathematical tool at our disposal to enable an accurate analysis and assessment of behavior of the system in which such machines and control elements have been applied. The paper discusses energy savings using mathematical model of losses in elements, the energy efficiency of the system. There are possibilities to reduce energy losses in proportional control systems (in the pump, in the throttle control unit, especially in the cylinder), and thus to improve the energy efficiency of the throttling manifold. The considerations allow for comparison of the loss power resulting from the applied hydraulic control structure of the hydraulic cylinder and the power consumed by the pump from the electric motor that drives it, the power necessary to provide pump-driven hydraulic cylinder. The article shows the impact on the output (useful) power consumed in the considered systems, and the impact on the power consumed of the loss power in the individual elements. The paper presents also formulas of loss power, formulas of energy efficiency connected with investigated hydrostatic drives, two schematic diagrams of hydraulic systems, their principle of operation and problems of studying losses in elements and energy efficiency characteristics of systems consisting of a feed assembly, control set and cylinder. It also includes a subject matter connected with an energy loss power of hydrostatic systems with hydraulic cylinder controlled by proportional directional control valve. Diagrams of loss power of two hydraulic systems worked at the same parameters of speed and load of a cylinder, which were different due to structure and ability of energy saving, were presented and compared.


Author(s):  
Алексей Васильевич Лосев ◽  
Игорь Валерьевич Бычков ◽  
Вячеслав Викторович Коллеров ◽  
Анна Сергеевна Селезнева

The requirements for the quality of aviation technology are decisive in the creation of technological systems that ensure the industrial purity of products. But the cost component of the finishing and stripping technologies is also important, the value of which depends on the chosen method of removing liquids, for example, from hydraulic units of aircraft. Reliable and cost-effective manufacture of parts with specific geometric and technological properties is the main goal of industrial production. In a market economy, the production of competitive products is a necessity, and it is always the choice of a rational, stable price-quality ratio. The quality of engineering products is a multifactorial problem, depending on the complex of systemic organizational and technological measures. In the production of aircraft technology, quality assurance is associated with dependability and a guaranteed resource that is vital due to specific operating conditions. One of the most important measures to ensure the reliability and guaranteed life of aviation products is to ensure industrial cleanliness. Cleaning from microparticles, macro- and micro-hauler surfaces and edges of parts after mechanical types of processing is included in the complex of these measures. The most problematic is the cleaning of body parts with a complex configuration of external and internal surfaces. The need to remove liquids and other technological pollution is explained by functional, ergonomic and aesthetic reasons. If ergonomic and aesthetic factors do not affect the technical characteristics of products, then the functional ones are directly related to the operability of machines and mechanisms. Functional causes are the prevention of failures of hydraulic distribution and control devices, as well as the prevention of increased wear of critical parts occurring when friction pairs of solid metal particles enter the gaps, difficulties in assembling and positioning, reducing fatigue strength and so on. Burrs cause turbulence in the flow of gas or liquid, disrupting the flow uniformity. It is obvious that the mutually influencing processes occurring in the hydraulic systems of machines, in violation of working conditions, lead to an increase in negative phenomena. The peculiarity of the use of purification technologies is the need to remove liquids from 100% of the parts included in the autonomous system of mechanisms. If at least one detail is left untreated, then the working fluid, when in contact with contaminated surfaces, washes away these contaminants and spreads them throughout the system, while the most sensitive elements are damaged. The reasons for the need to clean the surface and edges of parts from technological contamination are given. A brief review of the results of modeling and research on the removal of burrs in the environment of detonating gas mixtures has been performed. The features of the thermopulse process are considered and the results of numerical and experimental studies are presented. A comparative analysis of the energy intensity of removing burrs of various metals is shown.


Sign in / Sign up

Export Citation Format

Share Document