scholarly journals Concentration of Heavy Metals in Soil around Dumpsites in Jimeta and Ngurore, Adamawa State, Nigeria

2019 ◽  
Vol 1 ◽  
pp. 105-112
Author(s):  
G Chessed ◽  
D C Sakiyo ◽  
A B Yako

Rapid urbanization and industrialization in developing countries have been associated with production and deposition of hazardous wastes in the soil environments. Heavy metals are major components of these wastes and have been implicated in several metal-related diseases and food poisoning in man. This study examined the concentration of Iron (Fe), Lead (Pb), Copper (Cu), Chromium (Cr), and Cadmium (Cd) heavy metals in soil near dumpsites of Jimeta and Ngurore, Yola North Local Government Areas (LGAs), Adamawa State. Soil samples from 0-20cm layer depth were collected in triplicates and analyzed using atomic absorption spectrophotometer (AAS). Results reveal that Fe, Pb, Cu and Chromium were detected, while Cadmium was found to be below the limit of detection. The mean concentration of the exchangeable cation in mg/kg in soil at Jimeta sites were: Fe (31.4 mg/kg) >Pb (0.92 mg/kg) > Cu (0.34 mg/kg) > Cr (0.11 mg/kg) >Cd (below limit of detection), while the mean concentration of the heavy metals in soil at Ngurore sites were: Fe (32 mg/kg) >Pb (0.83 mg/kg) > Cu (0.28 mg/kg) > Cr (0.07 mg/kg) >Cd (below limit of detection), respectively. Iron (Fe) was the most abundant element in both sites, followed by Pb. Heavy metal concentrations in soil followed the order of Fe>Pb>Cu>Cr>Cd, respectively. The paired T-test analyses for concentration of Cr, Fe, and Pb in soil nearthe two dumpsites show that there were statistically significant differences in the concentration levels of Cr, Fe, and Pb, while Cu showed no statistically significant difference between the two dumpsites. However, all the metals detected were below the permissible limit of WHO international standard with the exception of Pb whose concentration was above maximum permissible concentration (MPC). Persistent heavy metals accumulation in soils near these dumpsites may lead to increase uptake by vegetables grown near the dumpsites and this may pose a threat to its quality and safety and ultimately human health. The need to replace open dumpsites with well-designed landfills is advised.

Author(s):  
Akpe, Michael Akomaye ◽  
Ubua, Placcidus Unimuyi

The soil and edible vegetable samples were collected from Obudu Urban Area of Cross River State and were digested and analyzed for the Cd, Co, Cr, and Fe (heavy metals) concentration using Atomic Absorption Spectrometer (AAS) in the University of Calabar Laboratory. The eight vegetables considered for the study were Amaranthus spp., Corchorus olitorius, Murraya koenigii, Ocimum grattissimum, Solanum melongena, Talinum triangulare, Telferia occidentalis and Vernonia amygdalina. The results showed that the mean concentration of the metal in the soil in mgkg-1 ranged from (0.004-0.0048) and (0.005-0.046) in rainy and dry seasons respectively for Cd, (0.004-0.025) and (0.006-0.016) in rainy and dry season respectively for Cr, and (0.112-0.173) and (0.116-0.151) in rainy and dry season respectively for Fe. The concentration of Co was not detected in the soil or vegetables. The mean concentration accumulated by the vegetables and that present in the soil was in the order: Fe> Cd> Cr> Co. These results suggest that there is no significant difference between the amount of metals in the soil or that accumulated by the vegetables in rainy and dry seasons of the year. Also the amount of metals accumulated by most of the vegetables was directly proportional to the amount present in the soil where they are planted. The bioaccumulation ratios were all less than 1. These results indicate that the concentration of Cd, Co, Cr, & Fe in the soil and vegetables were still low and within the permissible limits of WHO/FAO. Thus, the consumption of the vegetables in the area may not cause any harm for now.


Author(s):  
Michael Akomaye Akpe ◽  
Joseph Odey ◽  
John Akwagiobe Agwupuye

The soil and edible vegetable samples were collected from Obanliku Urban Area of Cross River State and were digested and analyzed for the cadmium (Cd), chromium (Cr), iron (Fe) and mercury (Hg) (heavy metals) concentration using Flame Atomic Absorption Spectrometer (AAS) in Chemistry Laboratory, University of Calabar. The eight vegetables were considered such as Amaranthus spp., Corchorus olitorius, Murraya koenigii, Ocimum grattissimum, Solanum melongena, Talinum triangulare, Telfaira occidentalis and Vernonia amygdalina. The results revealed that the mean concentration of the metals in the soil in mgkg-1 ranged from (0.003-0.017) and (0.003-0.015) for Cd, (0.005-0.040) and (0.004-0.038) for Cr, and (0.052-1.541) and (0.050-1.511) for Fe in rainy and dry seasons respectively. Also, the mean concentration of the metals accumulated by the vegetables in mgkg-1 ranged from (0.002-0.010) for Cd, (0.003-0.018) and (0.003-0.016) for Cr, and (0.013-0.175) and (0.013-0.150) for Fe in rainy and dry season respectively. The concentration of Hg was not detected in the soil or vegetables. The mean concentration accumulated by the vegetables and that present in the soil was in the order: Fe > Cr > Cd > Hg. These results showed that there is no significant difference between the amount of metals in the soil or that accumulated by the vegetables in rainy and dry seasons of the year. Also the amount of metals accumulated by most of the vegetables was directly proportional to the amount present in the soil where they are planted. The bioaccumulation ratios and Target Hazard Quotients (THQ) were all less than 1. The results indicate that the concentration of Cd, Cr, Fe & Hg in the soil and vegetables were still low and within the permissible limits of WHO/FAO. Thus, the consumption of the vegetables in the area at the time when this study was carried out may not pose any health risk.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Elijah Abakpa Adegbe ◽  
Oluwaseyi Oluwabukola Babajide ◽  
Lois Riyo Maina ◽  
Shola Elijah Adeniji

Abstract Background Heavy metal accumulation in the ecosystem constitutes a potential toxic effect which is hazardous to human health. Increasing environmental pollution has necessitated the use of cattle egrets to evaluate the levels of heavy metal contamination, to establish their use in biomonitoring of heavy metals and to provide data for monitoring pollution in the environment. Results The present study assessed the utilization of Bubulcus ibis in monitoring pollution in five abattoirs, namely Agege, Bariga, Kara, Itire and Idi-Araba, all situated in Lagos State. The concentration of five (5) heavy metals, cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) was determined in the liver, muscle and feather of Bubulcus ibis using the atomic absorption spectrophotometer. The trend of metal accumulation was in the order: Zn > Cu > Pb > Cd > Ni for all the sampled tissues. The mean tissue concentrations of the metals were significantly different (p < 0.05) among the sites. The highest levels of metal concentration were reported in the liver in all the locations. Mean concentration of Cd in Kara (0.003 ± 0.00058) was significantly (p < 0.05) higher than those found at Agege (0.0013 ± 0.00058) and Idi-Araba (0.001 ± 0.001). A significant difference (p < 0.05) was also observed between the mean concentrations of Cu in Bariga (0.01 ± 0.001) and Idi-Araba (0.003 ± 0.001). Conclusion All the studied heavy metals were present in the liver, muscle and feathers of the cattle egrets. The contamination levels were ascertained from the study which indicated that cattle egrets are useful in biomonitoring studies and the generated data will serve as baseline data which could be compared with data from other locations for monitoring heavy metal pollution.


Author(s):  
Nazeefa Fatima ◽  
Munazza Khan ◽  
Muhammad Shuaib Kabeer

This study was conducted to determine the mean concentration of heavy metals such as lead (Pb), copper (Cu), zinc (Zn), chromium (Cr), manganese (Mn), nickel (Ni), selenium (Se), magnesium (Mg), and iron (Fe) in canned/packed fruits juices, collected from various stores in Lahore in a period of three months. These juices were categorized into four groups; local packed and canned and also imported packed and canned products. Every group consisted of ten samples. By using the di-acid digestion method, the collected samples were digested and analyzed under Atomic Absorption Spectrophotometer (AAS). The results indicated that the mean values of 7 out of 9 tested heavy metals including Pb, Mg, Ni, Fe, Cr, Se and Mn were above permissible limits (set by WHO) in all four understudy groups. Therefore, it was concluded that commercially available fruit juices are not all safe according to their heavy metals content for the human consumption despite their nutritive values.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Saeed Shanbehzadeh ◽  
Marzieh Vahid Dastjerdi ◽  
Akbar Hassanzadeh ◽  
Toba Kiyanizadeh

This study was carried out to examine heavy metals concentration in water and sediment of upstream and downstream of the entry of the sewage to the Tembi River, Iran. Samples were collected from upstream and downstream and were analyzed for Cd, Cr, Cu, Fe, Pb, Ni, and Zn by atomic absorption spectrophotometer. The results indicated that the average concentration of the metals in water and sediment on downstream was more than that of upstream. The comparison of the mean concentrations of heavy metals in water of the Tembi River with drinking water standards and those in the water used for agriculture suggests that the mean concentration of Cu and Zn lies within the standard range for drinking water and the mean concentration of Mn, Zn, and Pb lies within the standard range of agricultural water. The highest average concentration on downstream for Pb in water and for Mn in sediment was 1.95 and 820.5 ppm, respectively. Also, the lowest average concentration on upstream was identified for Cd in water and sediment 0.07 and 10 ppm, respectively. With regard to the results, it gets clear that using the water for recreational purposes, washing, and fishing is detrimental to human health and the environment.


2020 ◽  
pp. 1589-1592
Author(s):  
Harith Saeed Al-Warid ◽  
Hayder Z Ali ◽  
Ghassan Nissan ◽  
Abbas Haider ◽  
Ahmed Yosef

     Thirty individuals of Bellamya bengalensis and Physella acuta were collected and identified from the Tigris River in Baghdad during the period between October to November 2017. The efficiency of bioaccumulation of the two species as bioindicators for aquatic heavy metal pollution with Cd, Ni, Pb and Cu was investigated. Both snail species had the ability to accumulate heavy metals. The mean of Ni concentration in soft tissues of both snails was 1.53 ppm while the mean concentration of other heavy metals was significantly lower; they reached 0.51 ppm, 0.36 ppm and 0.29 ppm, respectively. While no significant differences between B. bengalensis and  P.acuta were noticed in the ability to accumulate the heavy metals. It is concluded that both snails shared the features of good bioindicators due to their sensitivity to pollution.:


Author(s):  
Atul R. Chourpagar ◽  
Rumana Shaikh ◽  
G. K. Kulkarni

<em>Mercury concentrations were recorded in water and tissue of Barytelphusa cunicularis from Pimpalwadi site (Jaikwadi Dam) near Aurangabad. The level of heavy metals in the ovary and spermatheca of crabs was investigated using Atomic Absorption Spectrophotometer (AAS). The mean concentration of mercury in the crab was 0.9 ±0.001 µg/g. A histopathological alteration in ovary and spermatheca was also studied. Several histological changes were noted in the ovary tissue i. e. Distortion of yolk granules, vacuolization, slight necrosis in the oocytes in the ovary and vacuolization observe in lumen, granular substances, sperm mass and spermathecal fluid was evenly distributed in the crab was observed after exposed to sublethal concentration (24<sup>th</sup> of LC<sub>50</sub>:1/5<sup>th</sup> 0.208 ppm) of mercuric chloride.</em>


2021 ◽  
Vol 25 (5) ◽  
pp. 841-845
Author(s):  
C.A.E. Ibhadode ◽  
I.R. Ilaboya

Groundwater pollution by heavy metals such as lead, copper, nickel and iron is one of the major environmental issues of concern which has developed into a widely studied area. In this study, attempt was made to investigate the level of heavy metals in selected boreholes around the vicinity of cemeteries in Benin City. Seventy-two (72) samples of groundwater were taken from boreholes in 9 stations around the three cemeteries in Benin City on monthly basis. The samples were analysed for 7 heavy metals, in accordance with standard procedures. The heavy metals include; Zinc, Lead Iron, Copper, Cadmium, Nickel and Mercury. From the results of the study, a variation in the mean concentration of zinc was observed. The mean concentration of zinc in site 1 was 0.450mg/l, for site 2, it was 0.140mg/l and for site 3, it was 1.0533mg/l. For iron, mean concentration was 0.072mg/l in site 1. For site 2, mean concentration of iron was 2.140mg/l and for site 3, mean concentration of iron was 0.560mg/l. It was further revealed based on the results that mean value of heavy metals in groundwater around cemeteries in Benin City were generally lower during dry season compared to wet season. In addition, result of computed pollution index (Pi) revealed that the heavy metal with the highest potential to pollute groundwater is Cadmium, with Pi of 0.5333 and 0.400 representing dry season and wet season respectively.


2020 ◽  
Vol 7 (2) ◽  
pp. 198
Author(s):  
Oluwafunso Oladipo Awosusi ◽  
Adeshina Luqman Adisa

Heavy metal pollution has been a source of health problems in humans. These metals are persistent, toxic, non-degradable and often take a long time to be eliminated from the body. This study is, therefore, designed to assess heavy metal pollution of River Basin in Nigeria. Seventy stream sediment samples were systematically collected from an area, approximately 400km2, latitude 7O 00’ and 7O 15’N and longitude 5O 11’ and 5O 19’E. The pollution status of the sediments by heavy metals were assessed by Enrichment Factor (EF), Pollution Load Index (PLI) and Geo-accumulation Index (Igeo). The concentrations of the heavy metals were also compared with United States Environmental Protection Agency (USEPA) Sediment quality guidelines (SQG). The samples were dried in the laboratory, disaggregated, sieved to minus 80 (<177 microns) mesh size using nylon sieve. The sieved samples were, then, digested and the concentrations of As, Co, Fe, Mn, Ni, Pb, V and Zn were determined by Wavelength Dispersive X-ray Fluorescence Spectrometry (WD-XRFS). Results revealed that the mean concentrations of the heavy metals are in the order V>Zn>Pb>As>Ni>Co>Fe>Mn. Furthermore, the mean concentration of lead exceeded both the average world shale and the USEPA SQG values. However, the mean concentration of cobalt, nickel, manganese and zinc were lower than the average world shale values for these elements. The Enrichment Factor (EF) revealed that cobalt was moderately enriched while arsenic and lead were significantly enriched in the sediments. On the basis of the geoaccumulation index, the stream sediments were largely uncontaminated except at some sites that were moderately to strongly contaminated by As and Pb.  


2019 ◽  
Vol 11 (7) ◽  
pp. 1832 ◽  
Author(s):  
Aman Fang ◽  
Jihong Dong ◽  
Yingli An

Xuzhou, as a mining city in China, has been experiencing 130 years of coal mining and processing. To explore the spatial distribution characteristics and pollution status of soil heavy metals (Cr, Cd, As, Hg, Zn, and Pb) under different land-use types, a total of 2697 topsoil samples were collected in all of the areas (except for water) of Xuzhou in 2016. Overall, the mean concentrations of Cr (70.266 mg/kg), Cd (0.141 mg/kg), As (10.375 mg/kg), Hg (0.036 mg/kg), Zn (64.788 mg/kg), and Pb (24.84 mg/kg) in Xuzhou soils were lower than the environmental quality standard for soils (GB15618-1995). However, the mean concentrations of Cr, Hg, and Pb exceeded their corresponding background values, with the mean concentration of Hg being almost three times its background value. For different land-use types, the highest mean concentration of Cr was concentrated in grassland soils. The mean concentrations of Cd, As, Zn, and Pb in mining area soils were higher than those in the other soils. The mean concentration of Hg was the highest in the built-up area soils. Based on the potential ecological risk assessment, the forestland, garden land, grassland, and others were at low and moderate risk levels, the farmland and mining area were at low, moderate, and high risk levels, and the built-up area was at various risk levels in Xuzhou. There was a significant positive correlation between Cr, Pb, and Hg concentrations and the corresponding organic carbon contents in the farmland, built-up area, garden land, forestland, and other soils ( p < 0.01 ). A high degree of correlation was found between Cr and Hg concentrations, as well as organic carbon contents in grassland soils, with values of p < 0.05 and p < 0.01 , respectively. An obvious correlation could be seen between Hg concentrations and organic carbon contents in mining area soils ( p < 0.01 ).


Sign in / Sign up

Export Citation Format

Share Document