scholarly journals A CRITICAL APPRAISAL ON IMMUNOMODULATION AND BATTLE AGAINST COVID-19: AN EVIDENCE BASED PREVENTIVE AYURVEDIC APPROACH

AYUSHDHARA ◽  
2020 ◽  
pp. 2656-2670
Author(s):  
Masand Sameet ◽  
Thakur Jyotsna

The emergence of SARSCOV-2 has been noticed as the third introduction of a highly pathogenic corona virus into the human population after SARS-COV and MERV-COV in 21st century. It has posed a horrible situation that warrants urgent global attention due to the emergence of more virulent viral strain, predicted future viral mutations, prohibitive cost of available drugs, time lag between vaccine development and mass causalities occurring all over the world. Although specific antiviral vaccine is the effective solution but a potent and comprehensive immune response to maintain homeostasis is also critical for prophylactic as well as therapeutic management of the disease. Amidst all the gloom spread due to this outbreak, everyone is focusing on preventive measures until an effective vaccine is developed. Ayurveda- An holistic science offers a plethora of preventive therapies to enhance body’s resistance against infections. It is evident that nutritional and herbal approaches taken together provide potent tools for controlling an array of viral infections and have been effectively used by humans all over the world since ages during such outbreaks. Ayurveda and yoga have great potential for embracing the world in creating a more positive health abode. Herbs exhibit a diverse array of biological activities and can be effectively harnessed for managing this pandemic. This review portrays an eclectic overview for the preventive management of COVID-19 pandemic covering the dietary, lifestyle and herbal evidence based approaches that may be most likely helpful in managing the current pandemic scenario and also strengthens our body to cope-up with the next pandemic that might appear in not too distant future.

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nikolaos C. Kyriakidis ◽  
Andrés López-Cortés ◽  
Eduardo Vásconez González ◽  
Alejandra Barreto Grimaldos ◽  
Esteban Ortiz Prado

AbstractThe new SARS-CoV-2 virus is an RNA virus that belongs to the Coronaviridae family and causes COVID-19 disease. The newly sequenced virus appears to originate in China and rapidly spread throughout the world, becoming a pandemic that, until January 5th, 2021, has caused more than 1,866,000 deaths. Hence, laboratories worldwide are developing an effective vaccine against this disease, which will be essential to reduce morbidity and mortality. Currently, there more than 64 vaccine candidates, most of them aiming to induce neutralizing antibodies against the spike protein (S). These antibodies will prevent uptake through the human ACE-2 receptor, thereby limiting viral entrance. Different vaccine platforms are being used for vaccine development, each one presenting several advantages and disadvantages. Thus far, thirteen vaccine candidates are being tested in Phase 3 clinical trials; therefore, it is closer to receiving approval or authorization for large-scale immunizations.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 302 ◽  
Author(s):  
Anthony C. Ike ◽  
Chisom J. Onu ◽  
Chukwuebuka M. Ononugbo ◽  
Eleazar E. Reward ◽  
Sophia O. Muo

Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2443 ◽  
Author(s):  
Zi Li ◽  
Wenqi He ◽  
Yungang Lan ◽  
Kui Zhao ◽  
Xiaoling Lv ◽  
...  

An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV) infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS) dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%–99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development.


2021 ◽  
Vol 20 ◽  
Author(s):  
Abdelkarim Ezaouine ◽  
Badreddine Nouadi ◽  
Yousra Sbaoui ◽  
Mariam El Messal ◽  
Fatima Chegdani ◽  
...  

Abstract: Satureja genus belongs to the Lamiaceae family, they are used in food products and by pharmaceutical and cosmetic industries. The chemical composition of Satureja are responsible for its pharmacological and phytochemical properties. Among the various biological activities, notably antioxidant, antibacterial and antifungal, Satureja also has a potential antiviral activity. The existence of a microbiota modulation potential by Satureja in farming animals has also been reported. Viral pathologies are one of the main causes of disease in the world. It is commonly known that gut microbiota plays a crucial role in the fight and progression of viral infection. Previous studies conducted on coronavirus disease 2019 (COVID-19) pandemic have prouved an imbalance in the intestinal and pulmonary microbiota via gut-lung axis. Knowing the properties of Satureja and its traditional use, one can suggest the possibility of using it as dietary supplement to modulate immune system in order to prevent and fight viral infections. The objective of this review is to reveal the potential impact of medicinal plants such as Satureja genus as food supplement, on immune enhancing during SARS-CoV-2 infection and their relationships with the intestinal microbiota.


Author(s):  
Shuaibu Abdullahi Hudu ◽  
Saadatu Haruna Shinkafi ◽  
Shuaibu Umar

Development of an effective vaccine is of paramount important in disease prevention and control. As such, recombinant technology can serve as a gateway for the development of safe and effective vaccines that can be delivered effectively with an appropriate adjuvant. Therefore, this paper aimed to review the role of recombinant vaccine technology, new adjuvants and the challenge of vaccine delivery. Related peer-reviewed journal article searches were conducted using a subscribed database at the Universiti Putra Malaysia library, involving areas of Health Sciences and Medicine via Medline, SCOPUS and Google Scholar. New generation vaccines include highly purified synthetic or recombinant antigens that stimulate effective cell-mediated immune and mucosal immunity. In order to enhance their efficacy, a number of adjuvants are used. Efforts have also been made to explore the usage of non-invasive routes of administration, devices and equipment for optimized antigen and immune-potentiator delivery of the immune system. Recombinant vaccine technology is rapid, compared to the traditional method of vaccine development and does not require the handling of live viruses. It is, therefore, a promising technology for developing a future vaccine to curb emerging and re-emerging viral infections that may be life-threatening or teratogenic.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 39
Author(s):  
Juanita Mellet ◽  
Michael S. Pepper

As of 8 January 2021, there were 86,749,940 confirmed coronavirus disease 2019 (COVID-19) cases and 1,890,342 COVID‑19-related deaths worldwide, as reported by the World Health Organization (WHO). In order to address the COVID‑19 pandemic by limiting transmission, an intense global effort is underway to develop a vaccine against SARS-CoV-2. The development of a safe and effective vaccine usually requires several years of pre-clinical and clinical stages of evaluation and requires strict regulatory approvals before it can be manufactured in bulk and distributed. Since the global impact of COVID‑19 is unprecedented in the modern era, the development and testing of a new vaccine are being expedited. Given the high-level of attrition during vaccine development, simultaneous testing of multiple candidates increases the probability of finding one that is effective. Over 200 vaccines are currently in development, with over 60 candidate vaccines being tested in clinical trials. These make use of various platforms and are at different stages of development. This review discusses the different phases of vaccine development and the various platforms in use for candidate COVID‑19 vaccines, including their progress to date. The potential challenges once a vaccine becomes available are also addressed.


2016 ◽  
Author(s):  
Zi Li ◽  
Wenqi He ◽  
Yungang Lan ◽  
Kui Zhao ◽  
Xiaoling Lv ◽  
...  

An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV) infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS) dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%-99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development.


2016 ◽  
Author(s):  
Zi Li ◽  
Wenqi He ◽  
Yungang Lan ◽  
Kui Zhao ◽  
Xiaoling Lv ◽  
...  

An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV) infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS) dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%-99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development.


2021 ◽  
Vol 43 (1) ◽  
pp. 52-64
Author(s):  
Mohammad Kayesh ◽  
Md Hashem ◽  
Kyoko Tsukiyama-Kohara

Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host’s immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host’s survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.


Crisis ◽  
2000 ◽  
Vol 21 (4) ◽  
pp. 193-194
Author(s):  
Claire Henderson ◽  
Marija Brecelj ◽  
Paola Dazzan ◽  
Mojca Dernovsek ◽  
Oscar Meehan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document