scholarly journals Brief History and Advancements of Vaccination Against Avian Coccidiosis: A Review

2021 ◽  
Vol 9 (2) ◽  
pp. 31-41

Coccidiosis is a major protozoal disease that severely affects livestock and other animals, especially poultry. Seven species of Eimeria cause avian coccidiosis in poultry and evolve from the epithelial cells of intestine, readily induce illness and cause death to a varying extent. Prophylactic chemotherapy was a dominant choice for the control of coccidiosis but resistance to the drug was a major factor of therapy failure. Protective immunity was produced in chickens with any of Eimeria species as only species-specific immunity can be produced by recently used vaccines. Attenuation can be achieved by the serial passages in all seven Eimeria species. In chicken, the first attempt against coccidiosis caused the introduction of live oocysts, the basis of which led to the discovery of first live attenuated commercial vaccine, Paracox1. As the emerged recombinant vaccines were replaced as a first choice, there is still a dire need to do more work on new techniques like DNA vaccine formulation along with the role of dendritic cells to produce immunity and cross-protection against avian coccidiosis. This article describes step-by-step developments in the vaccination process from the last 70 years along with a brief discussion on novel techniques to induce immunity against coccidiosis.

Author(s):  
Md Ather Hussain Ansari ◽  
Md Sadique Hussain ◽  
Mohit

Many countries are engaged in making vaccine against COVID-19 as the world records more than 38 million SARS-CoV-2 infections and more than one million deaths. It has prompted nations to close the borders, halted companies, kept people inside their homes, and numerous other measures to prevent their spread. We systematically searched on Google scholar, PubMed, LitCovid, and MedRxiv using the certain search terms for published articles. The infection raging through communities is expected to have evoked some degree of immunity in many asymptomatic and recovered individuals. However, the level of protective immunity and duration of such immunity have not been studied in depth. At the same time, spanning from the conventional whole virus vaccine to recombinant vaccines using Adenovirus vectors and first-of-its kind mRNA vaccines are in human trials. Before the effectiveness and safety of such vaccines are established billions of doses have been produced and stockpiled to save time in production and distribution. Antigenic diversity and the potential role of passive surveillance in COVID-19 regulation are explored in this report.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1831-1840 ◽  
Author(s):  
L. A. Roesner ◽  
E. H. Burgess

Increased concern regarding water quality impacts from combined sewer overflows (CSOs) in the U.S. and elsewhere has emphasized the role of computermodeling in analyzing CSO impacts and in planning abatement measures. These measures often involve the construction of very large and costly facilities, and computer simulation during plan development is essential to cost-effective facility sizing. An effective approach to CSO system modeling focuses on detailed hydraulic simulation of the interceptor sewers in conjunction with continuous simulation of the combined sewer system to characterize CSOs and explore storage-treatment tradeoffs in planning abatement facilities. Recent advances in microcomputer hardware and software have made possible a number of new techniques which facilitate the use of computer models in CSO abatement planning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesca Mancini ◽  
Gianmarco Gasperini ◽  
Omar Rossi ◽  
Maria Grazia Aruta ◽  
Maria Michelina Raso ◽  
...  

AbstractGMMA are exosomes released from engineered Gram-negative bacteria resembling the composition of outer membranes. We applied the GMMA technology for the development of an O-Antigen (OAg) based vaccine against Shigella sonnei, the most epidemiologically relevant cause of shigellosis. S. sonnei OAg has been identified as a key antigen for protective immunity, and GMMA are able to induce anti-OAg-specific IgG response in animal models and healthy adults. The contribution of protein-specific antibodies induced upon vaccination with GMMA has never been fully elucidated. Anti-protein antibodies are induced in mice upon immunization with either OAg-negative and OAg-positive GMMA. Here we demonstrated that OAg chains shield the bacteria from anti-protein antibody binding and therefore anti-OAg antibodies were the main drivers of bactericidal activity against OAg-positive bacteria. Interestingly, antibodies that are not targeting the OAg are functional against OAg-negative bacteria. The immunodominant protein antigens were identified by proteomic analysis. Our study confirms a critical role of the OAg on the immune response induced by S. sonnei GMMA. However, little is known about OAg length and density regulation during infection and, therefore, protein exposure. Hence, the presence of protein antigens on S. sonnei GMMA represents an added value for GMMA vaccines compared to other OAg-based formulations.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2036
Author(s):  
Luigi Marongiu ◽  
Markus Burkard ◽  
Sascha Venturelli ◽  
Heike Allgayer

Natural compounds such as essential oils and tea have been used successfully in naturopathy and folk medicine for hundreds of years. Current research is unveiling the molecular role of their antibacterial, anti-inflammatory, and anticancer properties. Nevertheless, the effect of these compounds on bacteriophages is still poorly understood. The application of bacteriophages against bacteria has gained a particular interest in recent years due to, e.g., the constant rise of antimicrobial resistance to antibiotics, or an increasing awareness of different types of microbiota and their potential contribution to gastrointestinal diseases, including inflammatory and malignant conditions. Thus, a better knowledge of how dietary products can affect bacteriophages and, in turn, the whole gut microbiome can help maintain healthy homeostasis, reducing the risk of developing diseases such as diverse types of gastroenteritis, inflammatory bowel disease, or even cancer. The present review summarizes the effect of dietary compounds on the physiology of bacteriophages. In a majority of works, the substance class of polyphenols showed a particular activity against bacteriophages, and the primary mechanism of action involved structural damage of the capsid, inhibiting bacteriophage activity and infectivity. Some further dietary compounds such as caffeine, salt or oregano have been shown to induce or suppress prophages, whereas others, such as the natural sweeter stevia, promoted species-specific phage responses. A better understanding of how dietary compounds could selectively, and specifically, modulate the activity of individual phages opens the possibility to reorganize the microbial network as an additional strategy to support in the combat, or in prevention, of gastrointestinal diseases, including inflammation and cancer.


2021 ◽  
Vol 22 (9) ◽  
pp. 4637
Author(s):  
Daniel Barth ◽  
Andreas Lückhoff ◽  
Frank J. P. Kühn

The human apoptosis channel TRPM2 is stimulated by intracellular ADR-ribose and calcium. Recent studies show pronounced species-specific activation mechanisms. Our aim was to analyse the functional effect of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), commonly referred to as PIP2, on different TRPM2 orthologues. Moreover, we wished to identify the interaction site between TRPM2 and PIP2. We demonstrate a crucial role of PIP2, in the activation of TRPM2 orthologues of man, zebrafish, and sea anemone. Utilizing inside-out patch clamp recordings of HEK-293 cells transfected with TRPM2, differential effects of PIP2 that were dependent on the species variant became apparent. While depletion of PIP2 via polylysine uniformly caused complete inactivation of TRPM2, restoration of channel activity by artificial PIP2 differed widely. Human TRPM2 was the least sensitive species variant, making it the most susceptible one for regulation by changes in intramembranous PIP2 content. Furthermore, mutations of highly conserved positively charged amino acid residues in the membrane interfacial cavity reduced the PIP2 sensitivity in all three TRPM2 orthologues to varying degrees. We conclude that the membrane interfacial cavity acts as a uniform PIP2 binding site of TRPM2, facilitating channel activation in the presence of ADPR and Ca2+ in a species-specific manner.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 831
Author(s):  
Patrycja Burzyńska ◽  
Łukasz F. Sobala ◽  
Krzysztof Mikołajczyk ◽  
Marlena Jodłowska ◽  
Ewa Jaśkiewicz

Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
GongXin Yu

Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I reportExonVar, a novel computational pipeline forExon-based human-chimpanzee comparativeVariant analysis. The objective is to comparatively analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons withExonVaridentified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A “less-is-more” model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.


2007 ◽  
Vol 75 (9) ◽  
pp. 4629-4637 ◽  
Author(s):  
Althea A. Capul ◽  
Suzanne Hickerson ◽  
Tamara Barron ◽  
Salvatore J. Turco ◽  
Stephen M. Beverley

ABSTRACT Abundant surface Leishmania phosphoglycans (PGs) containing [Gal(β1,4)Man(α1-PO4)]-derived repeating units are important at several points in the infectious cycle of this protozoan parasite. PG synthesis requires transport of activated nucleotide-sugar precursors from the cytoplasm to the Golgi apparatus. Correspondingly, null mutants of the L. major GDP-mannose transporter LPG2 lack PGs and are severely compromised in macrophage survival and induction of acute pathology in susceptible mice, yet they are able to persist indefinitely and induce protective immunity. However, lpg2 − L. mexicana amastigotes similarly lacking PGs but otherwise normal in known glycoconjugates remain able to induce acute pathology. To explore this further, we tested the infectivity of a new PG-null L. major mutant, which is inactivated in the two UDP-galactose transporter genes LPG5A and LPG5B. Surprisingly this mutant did not recapitulate the phenotype of L. major lpg2 −, instead resembling the L. major lipophosphoglycan-deficient lpg1 − mutant. Metacyclic lpg5A −/lpg5B − promastigotes showed strong defects in the initial steps of macrophage infection and survival. However, after a modest delay, the lpg5A − /lpg5B − mutant induced lesion pathology in infected mice, which thereafter progressed normally. Amastigotes recovered from these lesions were fully infective in mice and in macrophages despite the continued absence of PGs. This suggests that another LPG2-dependent metabolite is responsible for the L. major amastigote virulence defect, although further studies ruled out cytoplasmic mannans. These data thus resolve the distinct phenotypes seen among lpg2 − Leishmania species by emphasizing the role of glycoconjugates other than PGs in amastigote virulence, while providing further support for the role of PGs in metacyclic promastigote virulence.


2021 ◽  
pp. 239496432110497
Author(s):  
Umberto Tinazzi

There is a gap of knowledge between practitioners about the off-site construction. For this reason, the Manni Group case study presented in this article highlights the positive role of dissemination as business value proposition support in the context of off-site construction industry. The Manni Group involved opinion leaders, professionals, universities and industrial partners in a network of dissemination that, going beyond the concept of advertising, it generated a multiple effect of value creation between the direct and indirect involved stakeholders. Dissemination emerges as a model of action that creates impacts on cultural change. It is scalable and applicable in many areas where actors have the right competences to manage the dissemination. Wherever there is a knowledge gap or friction towards new techniques and methodologies, the model is able to create value for companies and stakeholders involved in the emerging network.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 557
Author(s):  
Supawadee Umthong ◽  
John R. Dunn ◽  
Hans H. Cheng

Marek’s disease (MD) is a lymphoproliferative disease in chickens caused by Marek’s disease virus (MDV), a highly oncogenic alphaherpesvirus. Since 1970, MD has been controlled through widespread vaccination of commercial flocks. However, repeated and unpredictable MD outbreaks continue to occur in vaccinated flocks, indicating the need for a better understanding of MDV pathogenesis to guide improved or alternative control measures. As MDV is an intracellular pathogen that infects and transforms CD4+ T cells, the host cell-mediated immune response is considered to be vital for controlling MDV replication and tumor formation. In this study, we addressed the role of CD8+ T cells in vaccinal protection by widely-used monovalent (SB-1 and HVT) and bivalent (SB-1+HVT) MD vaccines. We established a method to deplete CD8+ T cells in chickens and found that their depletion through injection of anti-CD8 monoclonal antibodies (mAb) increased tumor induction and MD pathology, and reduced vaccinal protection to MD, which supports the important role of CD8+ T cells for both MD and vaccinal protection.


Sign in / Sign up

Export Citation Format

Share Document