2021’s top chemistry research, by the numbers

2021 ◽  
pp. 34-35
Author(s):  
Jessica Marshall
Keyword(s):  
Author(s):  
J. Kulik ◽  
Y. Lifshitz ◽  
G.D. Lempert ◽  
S. Rotter ◽  
J.W. Rabalais ◽  
...  

Carbon thin films with diamond-like properties have generated significant interest in condensed matter science in recent years. Their extreme hardness combined with insulating electronic characteristics and high thermal conductivity make them attractive for a variety of uses including abrasion resistant coatings and applications in electronic devices. Understanding the growth and structure of such films is therefore of technological interest as well as a goal of basic physics and chemistry research. Recent investigations have demonstrated the usefulness of energetic ion beam deposition in the preparation of such films. We have begun an electron microscopy investigation into the microstructure and electron energy loss spectra of diamond like carbon thin films prepared by energetic ion beam deposition.The carbon films were deposited using the MEIRA ion beam facility at the Soreq Nuclear Research Center in Yavne, Israel. Mass selected C+ beams in the range 50 to 300 eV were directed onto Si {100} which had been etched with HF prior to deposition.


2019 ◽  
Author(s):  
Victor Bloemendal ◽  
Floris P. J. T. Rutjes ◽  
Thomas J. Boltje ◽  
Daan Sondag ◽  
Hidde Elferink ◽  
...  

<p>In this manuscript we describe a modular pathway to synthesize biologically relevant (–)-<i>trans</i>-Δ<sup>8</sup>-THC derivatives, which can be used to modulate the pharmacologically important CB<sub>1</sub> and CB<sub>2</sub> receptors. This pathway involves a one-pot Friedel-Crafts alkylation/cyclization protocol, followed by Suzuki-Miyaura cross-coupling reactions and gives rise to a series of new Δ<sup>8</sup>-THC derivatives. In addition, we demonstrate using extensive NMR evidence that similar halide-substituted Friedel-Crafts alkylation/cyclization products in previous articles were wrongly assigned as the para-isomers, which also has consequence for the assignment of the subsequent cross-coupled products and interpretation of their biological activity. </p> <p>Considering the importance of the availability of THC derivatives in medicinal chemistry research and the fact that previously synthesized compounds were wrongly assigned, we feel this research is describing a straightforward pathway into new cannabinoids.</p>


2019 ◽  
Vol 16 (3) ◽  
pp. 290-306
Author(s):  
Rina Das ◽  
Gyati S. Asthana ◽  
Krishan A. Suri ◽  
Dinesh Mehta ◽  
Abhay Asthana

Tuberculosis (TB) is a global health disaster and is a wide-reaching hitch. The improper use of antibiotics in chemotherapy of TB patients led to the current problem of tuberculosis therapy which gives rise to Multi-Drug Resistant (MDR) strains. Nitrogen heterocycles including azole compounds are an important class of therapeutic agent with electron-rich property. Azole-based derivatives easily bind with the enzymes and receptors in organisms through noncovalent interactions, thereby possessing various applications in medicinal chemistry. Research on azoles derivatives have been expansively carried out and have become one of the extremely active area in recent years and the progress is quite rapid. A genuine attempt to review chemistry of azoles and to describe various azole-based compounds synthesized in the last two decades having promising antitubercular potential is described in the present article. It is hopeful that azole compounds may continue to serve as an important direction for the exploitation of azole-based antitubercular drugs with better curative effect, lower toxicity, less side effects, especially fewer resistances and so on.


2020 ◽  
Vol 7 (3) ◽  
pp. 183-195
Author(s):  
Musa Özil ◽  
Emre Menteşe

Background: Benzoxazole, containing a 1,3-oxazole system fused with a benzene ring, has a profound effect on medicinal chemistry research owing to its important pharmacological activities. On the other hand, the benzoxazole derivative has exhibited important properties in material science. Especially in recent years, microwave-assisted synthesis is a technique that can be used to increase diversity and quick research in modern chemistry. The utilization of microwave irradiation is beneficial for the synthesis of benzoxazole in recent years. In this focused review, we provide a metaanalysis of studies on benzoxazole in different reaction conditions, catalysts, and starting materials by microwave technique so far, which is different from conventional heating. Methods: Synthesis of different kind of benzoxazole derivatives have been carried out by microwave irradiation. The most used method to obtain benzoxazoles is the condensation of 2-aminophenol or its derivatives with aldehydes, carboxylic acids, nitriles, isocyanates, and aliphatic amines. Results: Benzoxazole system and its derivatives have exhibited a broad range of pharmacological properties. Thus, many scientists have remarked on the importance of the synthesis of different benzoxazole derivatives. Conventional heating is a relatively inefficient and slow method to convey energy in orientation to the reaction medium. However, the microwave-assisted heating technique is a more effective interior heating by straight coupling of microwave energy with the molecules. Conclusion: In this review, different studies were presented on the recent details accessible in the microwave- assisted techniques on the synthesis of the benzoxazole ring. It presents all examples of such compounds that have been reported from 1996 to the present. Benzoxazoles showed an extensive class of chemical substances not only in pharmaceutical chemistry but also in dyestuff, polymer industries, agrochemical, and optical brighteners. Thus the development of fast and efficient achievement of benzoxazoles with a diversity of substituents in high yield is getting more noteworthy. As shown in this review, microwave-assisted synthesis of benzoxazoles is a very effective and useful technique.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 44
Author(s):  
Muhammad Aminu Auwalu ◽  
Shanshan Cheng

Biological applications of fluorescent probes are rapidly increasing in the supramolecular chemistry research field. Several organic dyes are being utilized currently in developing and advancing this attractive research area, of which diketopyrrolopyrrole (DPP) organic dyes show an exceptional photophysical features (high-fluorescence quantum yield (FQY), good photochemical and thermal stability) that are essential properties for biological applications. Great efforts have been made in recent years towards developing novel fluorescent DPPs by different chemists for such applications, and some positive results have been reported. As a result, this review article gives an account of the progress that has so far been made very recently, mainly within the last decade, in that we selectively focus on and discuss more from 2015 to present on some recent scholarly achievements of fluorescent DPPs: quantum yield, aggregation-induced emission (AIE), solid-state emission, bio-imaging, cancer/tumor therapy, mitochondria staining and some polymeric fluorescent DPPs. Finally, this review article highlights researchers working on luminescent DPPs and the future prospects in some key areas towards designing DPP-based fluorescent probes in order to boost their photophysical and biological applications more effectively.


2020 ◽  
Vol 5 (11) ◽  
Author(s):  
Lindsey A Welch

AbstractGreen chemistry and sustainability are important concepts to incorporate into the undergraduate chemistry curriculum. Through the development of innovative undergraduate chemistry research projects in these areas, retention of students in the physical sciences can be improved. This paper describes two projects in undergraduate catalysis research: hydrogenation of furfural and the esterification of biooil from pyrolyzed wood. Catalytic transfer hydrogenation (CTH) of furfural with Pd/C led to the production of furfuryl alcohol, furfuryl isopropyl ether, 2-methylfuran, and tetrahydrofurfuryl alcohol. The metal chloride additives improved selectivity for furfuryl alcohol and furfuryl isopropyl ether. Catalytic conversion of pyrolyzed wood biooil in ethanol with a solid acid catalyst yielded ethyl esters, including ethyl acetate and ethyl propionate, as characterized by GC/MS These projects are described in the context of engaging undergraduate students in hands-on research for the purpose of improving retention and persistence, as well as preparing young scientists to enter graduate programs and the STEM workforce.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2248
Author(s):  
Lukáš Petera ◽  
Klaudia Mrazikova ◽  
Lukas Nejdl ◽  
Kristyna Zemankova ◽  
Marketa Vaculovicova ◽  
...  

Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.


2019 ◽  
Vol 59 ◽  
pp. 11.1-11.72 ◽  
Author(s):  
Sonia M. Kreidenweis ◽  
Markus Petters ◽  
Ulrike Lohmann

Abstract This chapter reviews the history of the discovery of cloud nuclei and their impacts on cloud microphysics and the climate system. Pioneers including John Aitken, Sir John Mason, Hilding Köhler, Christian Junge, Sean Twomey, and Kenneth Whitby laid the foundations of the field. Through their contributions and those of many others, rapid progress has been made in the last 100 years in understanding the sources, evolution, and composition of the atmospheric aerosol, the interactions of particles with atmospheric water vapor, and cloud microphysical processes. Major breakthroughs in measurement capabilities and in theoretical understanding have elucidated the characteristics of cloud condensation nuclei and ice nucleating particles and the role these play in shaping cloud microphysical properties and the formation of precipitation. Despite these advances, not all their impacts on cloud formation and evolution have been resolved. The resulting radiative forcing on the climate system due to aerosol–cloud interactions remains an unacceptably large uncertainty in future climate projections. Process-level understanding of aerosol–cloud interactions remains insufficient to support technological mitigation strategies such as intentional weather modification or geoengineering to accelerating Earth-system-wide changes in temperature and weather patterns.


Sign in / Sign up

Export Citation Format

Share Document