scholarly journals Growing miscanthus on radioactively contaminated soils and regularities of 137 CS redistribution in the system «Soil-Plant-Lysimetric waters»

Bioenergy ◽  
2021 ◽  
Author(s):  
V. M. Kvak ◽  
L. M. Skachok ◽  
L. V. Potapenko ◽  
N.  I. Gorbachenko

Purpose. Investigate the patterns of transition of 137 Cs radionuclide from soil to biomass and lysimetric waters depending on the elements of technology for growing giant miscanthus on solid fuel on contaminated soils. Methods. Lysimetric, biomorphological, radiometric, statistical, comparative and computational. Results. The article presents the results of research to study the accumulation of the radioactive isotope 137 Cs in the biomass of giant miscanthus and its transition into lysimetric waters. According to the research results, the level of 137 Cs radionuclide accumulation in miscanthus plants on contaminated soils depends on its concentration in the soil and elements of cultivation technology. It was found that in the variants where the bioenergy crop was grown on soils contaminated with radionuclides, the accumulation of 137 Cs in the biomass in the range of 14.7–18.6 Bq/kg and in the lysimetric waters of 4.36–4.57 Bq/l was observed, respectively. Fertilization with mineral fertilizers together with defecation and treatment with miscanthus rice before planting with the microbial preparation Polymyxobacterin in combination with BioMAG helped to increase the yield of dry biomass by 28% of control. Conclusions. The use of mineral fertilization in combination with liming, inoculation of miscanthus rhizomes with the microbial drug Polymyxobacterin and pre-planting treatment with organo-mineral fertilizer BioMAG significantly increases the yield of dry biomass, reduces the content of 137 Cs in biomass and lysimetric waters. The accumulation of 137 Cs in the biomass of miscanthus when grown on soils contaminated with radionuclides did not exceed the permissible level (DR), and the use of elements of technology helped to reduce the content of 137 Cs by 12–21% compared to control variants. The use of the fertilizer complex «mineral fertilizers + defect + Polymyxobacterin + BioMAG» resulted in the lowest accumulation coefficients of 137Cs, which are 0.07 in the biomass of miscanthus and 0.02 in lysimetric waters, respectively.

Bioenergy ◽  
2021 ◽  
Author(s):  
V. M. Kvak ◽  
L. V. Potapenko ◽  
L. M. Skachok ◽  
N. I. Horbachenko

Purpose. Investigate the accumulation of 137Cs and 90Sr radionuclides in the biomass of giant miscanthus depending on the agronomic methods of growing it on radioactively contaminated soils in Polissia. Method. Biomorphological, radiometric, lysometric, statistical, comparative and computational. Results. The article presents the results of research to study the accumulation of radionuclides 137Cs and 90Sr in the biomass of giant miscanthus. It was found that in the variants where the bioenergy crop was grown on soils contaminated with radionuclides, the accumulation of 137Cs in the biomass in the range of 14.7–18.6 Bq/kg and 90Sr — 0.46–0.54 Bq/kg was observed. The use of mineral fertilizers together with liming and inoculation with giant miscanthus with the microbial preparation Polymyxobacterin and treatment with organo-mineral fertilizer BioMAG helped to reduce the accumulation of radionuclides in the biomass of giant miscanthus as following: 90Sr — by 15% and 137Cs by 21%. It was investigated that the use of these agronomic techniques contributed to the formation of dry biomass yield at the level of 9.96 t/ha on average over three years of cultivation, which is 28% higher than the control. Conclusion. It is established that the use of mineral fertilization in combination with liming, inoculation of rhizomes of giant miscanthus with the microbial drug Polymyxobacterin and pre-planting treatment with organo-mineral fertilizer BioMAG contributes to a significant increase in dry biomass yield with reducing 90Sr and 137Cs. The accumulation of these radioactive isotopes in the biomass of giant miscanthus when grown on radionuclide-contaminated soils did not exceed the permissible level for cereal grains, and the use of agronomic techniques helped to reduce the content of 90Sr by 9–15% and 137Cs by 12–21% compared to control. The lowest coefficients of radionuclide conversion into biomass of giant miscanthus were obtained for both 90Sr (0.15) and 137Cs (0.24) for the use of mineral fertilizers together with liming and inoculation of giant mismanthus rizomes with Polymyxobacterin and treatment with BioMAG organo-mineral fertilizer.


2016 ◽  
Vol 11 (2) ◽  
pp. 10-14 ◽  
Author(s):  
Амиров ◽  
Marat Amirov

The paper presents the results of research on leached chernozem and gray forest soils on the effect of mineral fertilizers in combination with various indicators of soil moisture, watering. During all periods of its growth and development durum wheat is more demanding on the main factors than soft wheat, so its cultivation technology should be directed to the full realization of the potential of this crop.


2017 ◽  
Vol 63 (No. 3) ◽  
pp. 105-110 ◽  
Author(s):  
Vitale Luca ◽  
Polimeno Franca ◽  
Ottaiano Lucia ◽  
Maglione Giuseppe ◽  
Tedeschi Anna ◽  
...  

Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N<sub>2</sub>O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N<sub>2</sub>O fluxes compared to NH<sub>4</sub>NO<sub>3</sub>, although the lowest soil N<sub>2</sub>O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N<sub>2</sub>O emission.  


Bioenergy ◽  
2021 ◽  
Author(s):  
V. Lopushniak ◽  
B. Barchak ◽  
T. Yakubovski ◽  
H. Hrytsuliak

Purpose of research. To determine rational fertilization systems for growing topinambur on low fertility soil to increase the productivity of plant community in order to strengthen the feedstock base for the production of bioethanol. Methods. Field, accounting, laboratory, and analytical. Results. It was established that the topinambur can be successfully grown on degraded eroded podzolic low fertility soil. A rational organo-mineral fertilizer system with the introduction of 15–20 t/ha of manure and N40–65P40–53K40–70 as well as the introduction of the microbiological formulation Filazonit MC (10 L/ha) improves the productivity and green weight of Jerusalem artichoke significantly compared without fertilizer. The total yield of dry biomass increases by 7.3–7.5 t/ha or by 100–102%. However, in the process of using plantations for 3–4 years, the yield of dry biomass is significantly reduced. Therefore, re-fertilization is required. Fertilizer systems exert unequal influence on the formation of the nutrient regime of degraded soil. The organo-mineral fertilizer system is characterized by a certain ameliorative effect on the soil system and helps to reduce the acidity of the soil environment, reducing hydrolytic acidity by 0.23–0.42 mmol/100 g of soil, or by 14–26%. As the proportion of organic fertilizers in the fertilizer system increases, the hydrolytic acidity index decreases. Fertilizing causes an increase in the content of the available basic mineral nutrients in the soil. Conclusions. Organo-mineral fertilizer system for artichoke has significant advantages over organic and mineral ones, because of the best agrochemical indices of soil, the highest yield of green mass and the tubers, which leads to the highest yield dry weight of the harvest. During fertilization, the green mass increases more intensively than the tuber crop. The use of fertilizers in smaller quantities increases the yield of aboveground biomass, and the increased rates of complete mineral fertilizers (ΣNPK = 390 kg/ha of active substance) provide an increase in the proportion of tubers in the total dry matter yield. An additional factor in increasing biological productivity of artichoke’s plant community is the introduction of biologically active agents, such as Filazonitu MC, which contributes insignificantly artichoke tubers improve yield and yield a significant increase in aboveground biomass through activation of microbiological processes in soil and plant growth processes.


2017 ◽  
Vol 11 (4) ◽  
pp. 296 ◽  
Author(s):  
Wellington Da Silva Toledo ◽  
João Paulo Agápto ◽  
Gustavo Fonseca De Almeida

The feasibility of reducing non-renewable natural resources use in agriculture, associated with the need for ecologically-appropriate of organic waste disposal has become an important element in planning more sustainable agricultural systems. Consequently, the aim of the current study was to evaluate the response of the common bean, growing in an Eutrophic Latosol in the city of Buri-SP, to the application of organic and mineral fertilizers. An experiment was carried out in the 2015 agricultural year, using a randomized block design with 4 replicates and 5 treatments, these being: 1 - mineral fertilizer; 2 - organomineral fertilizer; 3 - sheep manure compost; 4 - chicken bedding compost, and control (soil without fertilizer application). The tested variables were: pod length (cm); per plant pod number; per pod seed number; mass of 100 grains (g); and grain yield (kg ha-1). Organomineral fertilizer provided the most significant increase in pod length, per plant pod number, and yield compared to the other treatments, except for sheep manure compost, where productivity did not differ. In addition, with the exception of mass per 100 seeds, there was no difference between treatments using organic fertilization and mineral fertilizer. Under the current study´s experimental conditions, organomineral fertilizer and sheep manure compost produced the highest productivity for common beans. Thus, mineral fertilization can be replaced by organic or organomineral alternatives, so helping to produce more sustainable production management and help reduce environmental impacts.


2015 ◽  
Vol 4 (4) ◽  
pp. 66 ◽  
Author(s):  
Maria I. Kokkora ◽  
Chryssoula Papaioannou ◽  
Panagiotis Vyrlas ◽  
Konstantinos Petrotos ◽  
Paschalis Gkoutsidis ◽  
...  

<p>The present study investigates the potential of olive mill wastewater, treated by microfiltration and XAD4 macroporous resin, to be used as liquid fertilizer in maize production through a 2-year field experiment. The treated olive mill wastewater (T-OMWW) was applied at two rates of 25 t and 50 t per ha per year, supplemented with mineral fertilization. There was also a treatment involving the application of only T-OMWW at the rate of 50 t per ha per year, and an only mineral fertilizer treatment. Mineral fertilizers and T-OMWW were applied progressively through a drip irrigation system.</p> Maize grain and soil analysis showed that T-OMWW was capable to meet crop requirements in N, P and K, and increase soil N, P and K availability. There was a tendency for increasing soil Na and electrical conductivity (EC) using the higher rate of T-OMWW. Therefore, for sustainable agriculture, it may be safer to apply the T-OMWW at the lower rate of 25 t per ha<sup> </sup>per year, or use the higher rate of 50 t per ha<sup> </sup>every other year.


2020 ◽  
Vol 36 (5) ◽  
Author(s):  
Emmerson Rodrigues De Moraes ◽  
Reginaldo De Camargo ◽  
Regina Maria Quintão Lana ◽  
Matheus Henrique Madeiros ◽  
Felipe Garcia Menezes ◽  
...  

The dependence of mineral fertilizers, increasingly, has brought concern facing the increased demand and because it is a non-renewable mineral resource. The organic fertilization, exclusively, it is impractical in large scale, however, the combination of organic and mineral sources have already proved to be feasible, both from the point of view of nutrition of plants as well as in the aspect of recycling of urban and industrial waste by agriculture. This research had as objective to determine the efficiency of aorganomineral fertilizer formulated on the basis of sewage sludge in substitution of mineral fertilizer in the cultivation of sugar cane in environments with different levels of soil fertility. An experiment was conducted in greater soil fertility, in the Institute Federal Goiano– Campus, Morrinhos-GO, Brazil. The other, less soil fertility, was implanted in the ethanol industry Tijuco Valley, located in Rio do Peixe, district of Prata-MG, Brazil. The experimental design was randomized blocks in a factorial 5 x 2 +1 being five doses, with and without a biostimulant plus an additional with mineral fertilization, in four replications. The doses were in function of fertilization recommendation of planting and coverage for each environment, consisting of: 100 % of the mineral source and percentage 0; 60; 80; 100 and 120 % of organomineral fertilizer. We evaluated the productivity, tillering, diameter and height of stem in Prata-MG the different percentages of the fertilization of planting favored and increased productivity, height and stem diameter of sugar cane; the use of biostimulants not contributed to increase crop yield. In Morrinhos-GO, the different percentage of planting fertilization did not increase the productivity, tillering, height and diameter of the sugarcane stem; the use of biostimulants increases the productivity yield of sugarcane. Organomineral fertilizer based on biosolids is similar to fertilization with mineral fertilizer in environments.


2018 ◽  
Vol 29 (2) ◽  
pp. 389
Author(s):  
Elein Terry Alfonso ◽  
Josefa Ruiz Padrón ◽  
Yudines Carillo Soso

The conversion of high-input agriculture to an agro-ecological approach bring harmony to the environment reducing degraded Agroecosystems. The objective of this study was to evaluate the effect of different nutritional management on yield and internal and external quality of tomato fruits as an alternative to the reduction of mineral fertilizers. The research was carried out at the National Institute of Agricultural Sciences (INCA) in Cuba, from September 15 to November 30, 2016. A randomized block design with four replications was used to study four treatments: Absolute control (without mineral fertilizer and bioproducts), Partial ecological nutrition (50 % of mineral fertilizer + bioproducts: mycorrhiza and biostimulant), Organic nutrition (organic fertilizer + bioproducts: mycorrhiza and biostimulant), and Conventional nutrition (NPK mineral fertilizer only). Evaluations regarding agricultural yield and its components, bromatological quality of fruits (Brix, acidity, vitamin C content, and nitrates) and postharvest indices (fruit firmness and diameter of endocarp and mesocarp) were performed. Agricultural yield (25.31 t/ha) and the internal quality of fruits (5.23 °Brix; 11.75 SST; 73.29 nitrates; 18.54 vitamin C, and 4.45 dry matter) applying the treatment where 50% of mineral fertilization was dispensed and complemented by bioproducts did not show significant differences with NPK treatment. Regarding the organic variant, the result in agricultural yield was lower (19.42 t/ha), in comparison with control and the ecological variant. Therefore, it is suggested further evaluation of the effect of the reduction of mineral fertilization on tomato crop and its combination with bioproducts.


2018 ◽  
Vol 8 (2) ◽  
pp. 356-366 ◽  
Author(s):  
Krishna Ribeiro Gomes ◽  
Thales Vinícius De Araújo Viana ◽  
Geocleber Gomes de Sousa ◽  
Fellype Rodrigo Barroso Costa ◽  
Benito Moreira de Azevedo

The amount of available water to certain crops can play a direct influence on the expected effect of the application of fertilizers, whether mineral or organic origin. Thus, this work was performed in order to evaluate the effects of the application of different irrigation depths and organic and mineral fertilizers in the development and production of sunflower plants in Ceará state, Brazil. The experiment was carried out in full sun in pots containing Alfisol, in a completely randomized experimental design with a 5 x 3 factorial, five irrigation depths (L1 = 50%, L2 = 75%, L3 = 100%, L4 and L5 = 125% = 150% of the Class-A Tank evaporation ECA) and three fertilizations (F1 = organic, using aerobic fermentation of Bovine biofertilizer, F2 = mineral fertilizers, NPK-based and F3 = control without an addition of fertilizers with five replications. At 65 days after sowing (DAS), the following characteristics were analyzed: number of leaves, stem diameter, and plant height. In the maximum development of achenes (about 90 DAS), the plants were harvested to determine the head diameter, dry mass of 1000 seeds, dry mass of sunflower head, seed dry mass and crop yield. The different depths applied causing a significant effect in all the sunflower crop yield parameters being as low as the effect of the applied lower depth. The application of biofertilizers in plants provided increments similar to those provided by the application of mineral fertilizers in stem diameter, dry mass of the sunflower head, the head diameter and seed dry mass under different irrigation depths. Since most applied irrigation depth (150% of the ECA), combined with the mineral fertilizer and bovine biofertilizer provided higher results in sunflower production.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Luiz Antonio Junqueira Teixeira ◽  
Ronaldo Severiano Berton ◽  
Aline Reneé Coscione ◽  
Luis Alberto Saes ◽  
Marcio Koiti Chiba

Sewage sludge (SS) or biosolid has been studied as source of nutrient for several different plant species. It also contributes to soil fertility recycling organic matter and plant nutrients. This followup work examines a three-year (2001–2004) field experiment designed to evaluate the response of banana plants (Cavendish subgroup) to the application of biosolid as source of nitrogen. The treatments consisted of control (mineral PK, no N), three rates of sludge, and two rates of mineral NPK fertilizer. Plant and soil N concentration, fruit yield, plant height, stem diameter, and foliar endurance index were measured. Fruit yield with mineral fertilization or sludge applications did not differ statistically(P>0.05). Application of biosolid resulted in statistically significant higher agronomic efficiency(P<0.05)in comparison to mineral fertilizers. The concentration of soil mineral nitrogen increased using mineral fertilizer or sludge until 0.80 m after three years of application. The effect of the source of N was smaller than the effect of the rate. Biosolid can be used as source of N for banana growers.


Sign in / Sign up

Export Citation Format

Share Document