scholarly journals Agronomic Efficiency of Biosolid as Source of Nitrogen to Banana Plants

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Luiz Antonio Junqueira Teixeira ◽  
Ronaldo Severiano Berton ◽  
Aline Reneé Coscione ◽  
Luis Alberto Saes ◽  
Marcio Koiti Chiba

Sewage sludge (SS) or biosolid has been studied as source of nutrient for several different plant species. It also contributes to soil fertility recycling organic matter and plant nutrients. This followup work examines a three-year (2001–2004) field experiment designed to evaluate the response of banana plants (Cavendish subgroup) to the application of biosolid as source of nitrogen. The treatments consisted of control (mineral PK, no N), three rates of sludge, and two rates of mineral NPK fertilizer. Plant and soil N concentration, fruit yield, plant height, stem diameter, and foliar endurance index were measured. Fruit yield with mineral fertilization or sludge applications did not differ statistically(P>0.05). Application of biosolid resulted in statistically significant higher agronomic efficiency(P<0.05)in comparison to mineral fertilizers. The concentration of soil mineral nitrogen increased using mineral fertilizer or sludge until 0.80 m after three years of application. The effect of the source of N was smaller than the effect of the rate. Biosolid can be used as source of N for banana growers.

2017 ◽  
Vol 63 (No. 3) ◽  
pp. 105-110 ◽  
Author(s):  
Vitale Luca ◽  
Polimeno Franca ◽  
Ottaiano Lucia ◽  
Maglione Giuseppe ◽  
Tedeschi Anna ◽  
...  

Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N<sub>2</sub>O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N<sub>2</sub>O fluxes compared to NH<sub>4</sub>NO<sub>3</sub>, although the lowest soil N<sub>2</sub>O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N<sub>2</sub>O emission.  


1999 ◽  
Vol 79 (2) ◽  
pp. 295-302 ◽  
Author(s):  
M. Aoyama ◽  
D. A. Angers ◽  
A. N'Dayegamiye

Application of cattle manure generally improves soil structure and organic matter (OM) content. However, changes in forms and location of OM within the aggregate structure are less well known. The effects of long-term (18-yr) applications of cattle manure (20 Mg ha–1 yr−1) and NPK fertilizer on the distribution of particulate and mineral-associated organic matter in water-stable aggregates were investigated in a Le Bras loam (Humic Gleysol). Soil samples from the 0- to 10-cm depth were taken from the untreated control, NPK, manure and NPK + manure treatments. They were separated into four aggregate-size fractions (>1000 µm, 250–1000 µm, 53–250 µm, and <53 µm) by slaking air-dried soil, followed by wet sieving. Particulate (>53 µm) and mineral-associated OM (<53 µm) were separated from water-stable aggregates >53 µm by sieving after mechanical dispersion. After 18 yr, manure increased the OM level of the whole soil and favored formation of slaking-resistant macroaggregates (250–1000 µm). This effect was primarily a result of the OM added by the manure. In contrast, NPK fertilizer did not affect soil OM level or macroaggregation. The increase in OM induced by manure application was observed primarily in macroaggregates, and both as mineral-associated and particulate OM. However, manure did not change OM located in the fraction <53 µm confirming that recently deposited OM preferentially accumulates within the aggregate structure and not in the finely or non-aggregated material. Since previous studies have shown that most of the C in cattle manure is composed of coarse particles, we hypothesize that manure-derived OM first enters the soil primarily as particulate material, then, during decomposition, is transformed within the aggregate structure into mineral-associated material thereby contributing to aggregate stabilization. Key words: Cattle manure, mineral fertilization, particulate organic matter, soil structure


2018 ◽  
Vol 30 (1) ◽  
pp. 19-23 ◽  
Author(s):  
I. M. Malynovska ◽  
N. A. Tkachenko

Established that liming with single dose by hydrolytic acidity (1,0 Hg) slows down the processes of organic matter mineralization in gray forest soil: without mineral fertilizers – in 2,1 times, with mineral fertilizers – in 4,1, with plowing of the seed crop biomass and the by-products of the predecessor – in 1,4 times. The mineralization of nitrogen compounds as a result of liming also proceeds slower: without mineral fertilizers – in 1,2 times, with mineral fertilizers – in 2,2 times. Confirmed patterns that were obtained in previous years of research about the impact of liming on the activity of humus mineralization – it decreases as a result of liming with full dose (1,0 Hg) without mineral fertilizers by 66,7 %, with mineral fertilizers – by 4,4 %.  The total biological activity in the soil without a mineral fertilizer increases as a result of liming by 23,0 %, with mineral fertilizers – by 42,5, at the background of exogenous organic matter (EOM) plowing – by 83,7 %. Liming allows to reduce the level of phytotoxicity of soil without mineral fertilization by 17,9 %, %, with mineral fertilizers at the background of EOM – by 12,2 %. Positive influence of liming is amplified in variants with introduction of organic matter into the soil (byproducts of predecessor and siderate). Plowing of siderate crop biomass and by-products of predecessor in crop rotation allows to slow down the processes of organic matter accumulation in soil. The application of liming and mineral fertilizers in combination with the introduction of EOM reduces the index of pedotropy in 2,1 times, only with mineral fertilizers (N60Р30К60) – in 1,5 times. Similarly, plowing of the EOM affects the intensity of other mineralization processes. The total biological activity increases as a result of EOM plowing into the soil: in the variant with the use of mineral fertilizers by 54,7 %, with mineral fertilizers and liming – by 28,9 %. Confirmed previously established laws regarding the impact of optimization of mineral nutrition on the activity of decomposition of humic substances: with an increase in the dose of mineral fertilizers in 1,5 and 2 times the activity of mineralization of humus decreases by 6.0 and 10,1 % respectively. With the improvement of mineral nutrition of plants, the amount of root extracts is increased, which is a more accessible substrate than humus acids, which leads to slowing down of the destruction of humus substances.


2020 ◽  
Vol 7 (3) ◽  
pp. 90-96
Author(s):  
Mônica Lau da Silva Marques ◽  
Jéssica Maria Israel de Jesus ◽  
Wanderson Moreira dos Santos ◽  
Jeferson Wendling Graciano Silva ◽  
Adriana Lau da Silva Martins ◽  
...  

Soybean is the most commercially cultivated crop in Paraguay, and obtaining high yields requires the application of large amounts of fertilizers, raising the cost of production. Developing strategies for the efficient use of applied nutrients is necessary. Therefore, the study aimed to evaluate the agronomic efficiency of combinations of mineral fertilizers with organic matter and rock powder in the development, nutrition, and yield of soybean. The experiment was carried out in Hernandarias, Paraguay, in the 2016-2017 harvest. The different fertilizers influenced the absorption of Zn, Mg and K, and grain yield. Among the treatments, the highlight was the agronomic efficiency index obtained by the replacement of 30% of mineral fertilizer by humus, presenting grain yield of 3219, 67 kg ha-1. However, it was equal to the mixing 30% of humus + rock powder with 70% of NPK formulation 04:40:10 with grain yield of 3206.50 kg ha-1, and the mixing 20% of humus + rock powder with 80% of NPK formulation 04:40:10 with grain yield of 3165.17 kg ha-1. Thus, it is recommended to use rock powder and humus in soybean production in Paraguay, especially in Latossolos (Oxisols) that have little organic matter and low CTC.


2009 ◽  
pp. 201-207 ◽  
Author(s):  
Marijana Pesakovic ◽  
Dragutin Djukic ◽  
Leka Mandic ◽  
Milan Rakicevic ◽  
Rade Miletic

Over 2003-2005 period, a study was performed on the effect of different rates of NPK fertilizer of formulation 8:16:24 + 3% MgO (N1 - 400 kg ha-1; N2 - 600 kg ha-1; N3 - 800 kg ha-1; N4 - 1000 kg ha-1) on development of the soil fungi. The trial was set up in the experimental plum orchard established by Fruit Research Institute Cacak, and the laboratory of Department of Microbiology, Faculty of Agronomy Cacak. Unfertilized soil was used as the control soil. Each of the stated variants was carried out in three replications. The size of the basic plot was 68 m2. The effect of the studied mineral fertilizer rates was determined three times over the growing season, the number of fungi being checked by the indirect rarefaction method on Chapek nutritive medium. The results of the study inferred that the application of mineral fertilizers brought about the decrease in the number of fungi. Of all studied variants, the one with the highest nitrogen rate (variant N4) exhibited the strongest effect. The influence of the fertilizer was highest at the third sampling. Furthermore, the effect was highest in season 2003.


2016 ◽  
Vol 62 (No. 8) ◽  
pp. 355-360 ◽  
Author(s):  
L. Hlisnikovský ◽  
G. Mühlbachová ◽  
E. Kunzová ◽  
M. Hejcman ◽  
M. Pechová

The 28-day incubation experiment was carried out to evaluate the impact of the application of digestate (Dig); digestate with straw (DigSt); pig slurry (Slu) and mineral fertilizer (NPK) on Cd, Cu, Mn and Zn availability, on K<sub>2</sub>SO<sub>4</sub>-extractable carbon content and on the soil pH value in long-term contaminated soil. At days three and seven of the experiment, the 0.01 mol/L CaCl<sub>2</sub>-extractable fractions of Cd, Zn and Mn significantly decreased under organic treatments (Dig, DigSt and Slu) with the most pronounced effect under Dig treatment. The NPK treatment caused the increase of risky element concentrations since day 21 of incubation which was accompanied with pH decrease. The contents of 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon were the highest at day 3 and 7 of incubation in organic treatments. The significant correlations between 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon and CaCl<sub>2</sub>-extractable metal concentrations showed a close relationship between fresh organic matter added in organic fertilizers and risky element availability, suggesting that newly added labile organic matter can form temporary ligands with risky elements and release them later following its decomposition.  


2020 ◽  
Vol 12 (17) ◽  
pp. 7165
Author(s):  
Przemysław Tkaczyk ◽  
Agnieszka Mocek-Płóciniak ◽  
Monika Skowrońska ◽  
Wiesław Bednarek ◽  
Sebastian Kuśmierz ◽  
...  

Soil acidification in agroecosystems is a natural process that could be accelerated, mainly by the inappropriate application of mineral fertilizers, or prevented, by sustainable management practices. On the basis of a three-year field study in a grassland agroecosystem, the impact of different rates of fertilization with nitrogen (N), phosphorus (P), and potassium (K) on soil chemical parameters related to soil acidity was evaluated. It was found that high-rate fertilization with ammonium nitrate accelerated the soil acidification process, which was additionally intensified by the application of superphosphate and potassium salt. The sum of exchangeable base cations, the values of base saturation and hydrolytic acidity in the soil reflected the interactions between the applied NPK-fertilizer levels. Considering chemical parameters related to soil acidity studied in this experiment, it seems that the best strategies for mitigating soil acidification in grasslands are reducing nitrate leaching, changing fertilizer types and increasing the input of base cations.


2020 ◽  
Author(s):  
Iria Benavente-Ferraces ◽  
Fátima Esteban ◽  
Denis Courtier-Murias ◽  
Ana Rey ◽  
Claudio Zaccone ◽  
...  

&lt;p&gt;Biochar application is now considered to be one of the most promising agricultural practices to mitigate climate change. However, to fully assess the benefits of biochar, we still need to better understand its effects on soil properties, and particularly on native soil organic matter (SOM) dynamics.&lt;/p&gt;&lt;p&gt;In this work, we investigated soil respiration and changes in SOM pools (mineral-free, intra-aggregate, and mineral-associated SOM) as affected by the application of 20 t / ha per year of biochar alone or combined with mineral fertilizer, municipal solid waste compost, or sewage sludge. The experiment was run for 7 years in a semiarid agricultural soil. We found that biochar had no effect on soil respiration with respect to mineral fertilization and no amendment (control), and tended to decrease CO&lt;sub&gt;2 &lt;/sub&gt;emissions from soils amended with municipal solid waste compost and sewage sludge. Biochar accumulated mainly in the mineral-free SOM fraction and its addition, especially in combination with municipal solid waste compost, promoted the amount of SOM occluded with aggregates and associated to mineral surfaces.&lt;/p&gt;&lt;p&gt;Acknowledgments: to the Spanish MICINN (MINECO, AEI, FEDER, EU) for supporting the research project AGL2016-75762-R.&lt;/p&gt;


1996 ◽  
Vol 126 (1) ◽  
pp. 63-74 ◽  
Author(s):  
M. A. Shepherd ◽  
R. Sylvester-Bradley

SUMMARYSoil mineral nitrogen (Nmin) was measured to 90 cm at a total of 12 sites in the UK in the autumn after an oilseed rape experiment, which measured responses to fertilizer N. On average, Nmin, increased by 15 kg/ha per 100 kg/ha fertilizer nitrogen (N) applied to the rape, up to the economic optimum amount of N (Nmin). There were larger increases in Nmin where fertilizer applications exceeded Nopt, thus super-optimal fertilizer applications disproportionately increased the amount of nitrate likely to leach over-winter. The small effects of sub-optimal N on Nmin were associated with large increases in N offtake by the oilseed rape, whereas the larger effects of super-optimal N on Nmin were associated with only small increases in N offtake. Over 70% of the variation in autumn Nmin was explained by the previous rape's N fertilizer rate and the topsoil organic matter content.Nitrogen applied to the rape increased grain yields of the succeeding wheat crops when no further fertilizer N was applied to the wheat. It was concluded that N applied to oilseed rape significantly affected Nmin after harvest, and these effects were not completely nullified by leaching over-winter, so soil N supply to the succeeding wheat crop was significantly increased. Responses in grain yield indicated that each 100 kg/ha N applied to the rape provided N equivalent to c. 30 kg/ha for the following cereal. Each 1% of soil organic matter further contributed N to the wheat, equivalent to 25 kg/ha.It is important to ensure that oilseed rape receives no more than the optimum amount of fertilizer N if subsequent leaching is to be minimized. Reductions below optimum amounts will have only a small effect on leaching. Substantial changes in the economic optimum N for rape production should be accompanied by adjustment in fertilizer N application to following wheat crops. Fertilizer recommendation systems for wheat should take account of the fertilizer N applied to the preceding oilseed rape and the topsoil organic matter content.


Sign in / Sign up

Export Citation Format

Share Document