scholarly journals Impact of near infrared (NIR) spectroscopy and hyperspectral (HS) imaging system to predict physicochemical composition and quality attributes of meat: A review

2021 ◽  
Vol 02 (03) ◽  
pp. 55-65
Author(s):  
M. N. Uddin ◽  
M. N. Hossain ◽  
N. Z. Shoshe ◽  
S. A. Toma ◽  
S. A. Belal ◽  
...  
2011 ◽  
Vol 04 (02) ◽  
pp. 199-208
Author(s):  
ZHIQIU LI ◽  
SHUDONG JIANG ◽  
VENKATARAMANAN KRISHNASWAMY ◽  
SCOTT C. DAVIS ◽  
SUBHADRA SRINIVASAN ◽  
...  

A near-infrared (NIR) tomography system with spectrally-encoded sources in two wavelength bands was built to quantify the temporal oxyhemoglobin and deoxyhemoglobin contrast in breast tissue at a 20 Hz bandwidth. The system was integrated into a 3 T magnetic resonance (MR) imaging system through a customized breast coil interface for simultaneous optical and MRI acquisition. In this configuration, the MR images provide breast tissue structural information for NIR spectroscopy of adipose and fibro-glandular tissue in breast. Spectral characterization performance of the NIR system was verified through dynamic phantom experiments. Normal human subjects were imaged with finger pulse oximeter (PO) plethysmogram synchronized to the NIR system to provide a frequency-locked reference. Both the raw data from the NIR system and the recovered absorption coefficients of the breast at two wavelengths showed the same frequency of about 1.3 Hz as the PO output. The frequency lock-in approach provided a practical platform for MR-localized recovery of small pulsatile variations of oxyhemoglobin and deoxyhemoglobin in the breast, which are related to the heartbeat and vascular resistance of the tissue.


2018 ◽  
Vol 8 (12) ◽  
pp. 2602 ◽  
Author(s):  
Laurence Schimleck ◽  
Joseph Dahlen ◽  
Seung-Chul Yoon ◽  
Kurt Lawrence ◽  
Paul Jones

Near-infrared (NIR) spectroscopy and NIR hyperspectral imaging (NIR-HSI) were compared for the rapid estimation of physical and mechanical properties of No. 2 visual grade 2 × 4 (38.1 mm by 88.9 mm) Douglas-fir structural lumber. In total, 390 lumber samples were acquired from four mills in North America and destructively tested through bending. From each piece of lumber, a 25-mm length block was cut to collect diffuse reflectance NIR spectra and hyperspectral images. Calibrations for the specific gravity (SG) of both the lumber (SGlumber) and 25-mm block (SGblock) and the lumber modulus of elasticity (MOE) and modulus of rupture (MOR) were created using partial least squares (PLS) regression and their performance checked with a prediction set. The strongest calibrations were based on NIR spectra; however, the NIR-HSI data provided stronger predictions for all properties. In terms of fit statistics, SGblock gave the best results, followed by SGlumber, MOE, and MOR. The NIR-HSI SGlumber, MOE, and MOR calibrations were used to predict these properties for each pixel across the transverse surface of the scanned samples, allowing SG, MOE, and MOR variation within and among rings to be observed.


2001 ◽  
Vol 7 (S2) ◽  
pp. 162-163
Author(s):  
EN Lewis ◽  
LH Kidder ◽  
KS Haber

Single point near-infrared (NIR) spectroscopy is used extensively for characterizing raw materials and finished products in a wide variety of industries: polymers, paper, film, pharmaceuticals, paintings and coatings, food and beverages, agricultural products. As advanced industrial materials become more complex, their functionality is often determined by the spatial distribution of their discrete sample constituents. However, conventional single point NIR spectroscopy cannot adequately probe the interrelationship between the spatial distribution of sample components with the physical properties of the sample. to fully characterize these samples, it is necessary to probe simultaneously spatial and chemical heterogeneity and correlate these properties with sample characteristics.Recently, we have developed a novel NIR imaging spectrometer that can deliver spatially resolved chemical information very rapidly. in contrast to conventional, single point NIR spectrometers, the imaging system uses an infrared focal-plane array (FPA) to collect up to 76,800 complete spectra, one for each pixel on the array, in approximately one minute.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


2021 ◽  
Vol 417 ◽  
pp. 129271
Author(s):  
Haojun Yu ◽  
Jian Chen ◽  
Ruiyu Mi ◽  
Juyu Yang ◽  
Yan-gai Liu

CrystEngComm ◽  
2021 ◽  
Author(s):  
Fen Xiao ◽  
Chengning Xie ◽  
Shikun Xie ◽  
Rongxi Yi ◽  
Huiling Yuan ◽  
...  

Broadband near infrared (NIR) luminescent materials have attracted great attention recently for the advance smart optical source of NIR spectroscopy. In this work, a broadband NIR emission from 650 nm...


Sign in / Sign up

Export Citation Format

Share Document