NIR spectroscopy in simulation – a new way for augmenting near-infrared phytoanalysis

2019 ◽  
Author(s):  
KB Bec ◽  
J Grabska ◽  
CW Huck
CrystEngComm ◽  
2021 ◽  
Author(s):  
Fen Xiao ◽  
Chengning Xie ◽  
Shikun Xie ◽  
Rongxi Yi ◽  
Huiling Yuan ◽  
...  

Broadband near infrared (NIR) luminescent materials have attracted great attention recently for the advance smart optical source of NIR spectroscopy. In this work, a broadband NIR emission from 650 nm...


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


2021 ◽  
pp. 096703352110079
Author(s):  
Agustan Alwi ◽  
Roger Meder ◽  
Yani Japarudin ◽  
Hazandy A Hamid ◽  
Ruzana Sanusi ◽  
...  

Eucalyptus pellita F. Muell. has become an important tree species in the forest plantations of SE Asia, and in Malaysian Borneo in particular, to replace thousands of hectares of Acacia mangium Willd. which has suffered significant loss caused by Ceratocystis manginecans infection in Sabah, Malaysia. Since its first introduction at a commercial scale in 2012, E. pellita has been planted in many areas in the region. The species replacement requires new silvicultural practices to induce the adaptability of E. pellita to grow in the region and this includes relevant research to optimise such regimes as planting distance, pruning, weeding practices and nutrition regimes. In this present study, the nutritional status of the foliage was investigated with the aim to develop near infrared spectroscopic calibrations that can be used to monitor and quantify nutrient status, particularly total foliar nitrogen (N) and phosphorus (P) in the field. Spectra acquired on fresh foliage in situ on the tree could be used to predict N and P with accuracy suitable for operational decision-making regards fertiliser application. If greater accuracy is required, spectra acquired on dry, milled foliage could be used to predict N and P within a relative error of 10% (R2c, r2CV, RMSEP, RPD = 0.77, 0.71, 0.02 g 100/g, 1.9 for foliar P and = 0.90, 0.88, 0.21 g 100/g, 3.0 for foliar N on dry, milled foliage). The ultimate application of this is in situ nutrient monitoring, particularly to aid longitudinal studies in fertiliser trial plots and forest operations, as the non-destructive nature of NIR spectroscopy would enable regular monitoring of individual leaves over time without the need to destructively sample them. This would aid the temporal and spatial analysis of field data.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Kirsti Cura ◽  
Niko Rintala ◽  
Taina Kamppuri ◽  
Eetta Saarimäki ◽  
Pirjo Heikkilä

In order to add value to recycled textile material and to guarantee that the input material for recycling processes is of adequate quality, it is essential to be able to accurately recognise and sort items according to their material content. Therefore, there is a need for an economically viable and effective way to recognise and sort textile materials. Automated recognition and sorting lines provide a method for ensuring better quality of the fractions being recycled and thus enhance the availability of such fractions for recycling. The aim of this study was to deepen the understanding of NIR spectroscopy technology in the recognition of textile materials by studying the effects of structural fabric properties on the recognition. The identified properties of fabrics that led non-matching recognition were coating and finishing that lead different recognition of the material depending on the side facing the NIR analyser. In addition, very thin fabrics allowed NIRS to penetrate through the fabric and resulted in the non-matching recognition. Additionally, ageing was found to cause such chemical changes, especially in the spectra of cotton, that hampered the recognition.


2021 ◽  
pp. 096703352098235
Author(s):  
Tomomi Takaku ◽  
Yusuke Hattori ◽  
Tetsuo Sasaki ◽  
Tomoaki Sakamoto ◽  
Makoto Otsuka

The effect of grinding on the pharmaceutical properties of matrix tablets consisting of ground glutinous rice starch (GRS) and theophylline (TH) was predicted by near infrared (NIR) spectroscopy. Ground GRS samples were prepared by grinding GRS in a planetary ball mill for 0-120 min, measured by X-ray diffractometry (XRD) and NIR, and then evaluated for crystallinity (%XRD) based on XRD profiles. Tablets containing TH (5 w/w%), ground GRS (94 w/w%), and magnesium stearate (1 w/w%) were formed by compression. Gel-forming and drug-release processes of the tablets were measured using a dissolution instrument with X-ray computed tomography (XCT). Swelling ratio (SWE) and mean drug-release time (MDT) were evaluated based on XCT and drug-release profiles, respectively. Calibration models for predicting percent %XRD, MDT, and SWE were constructed based on the NIR of ground GRS using partial least-squares. The results indicated the possibility of controlling the pharmaceutical properties of matrix tablets by altering the pre-gelatinization of GRS based on changes in their NIR spectra during the milling process.


Author(s):  
Ilaria Lanza ◽  
Daniele Conficoni ◽  
Stefania Balzan ◽  
Marco Cullere ◽  
Luca Fasolato ◽  
...  

Abstract Near-infrared (NIR) spectroscopy is a rapid technique able to assess meat quality even if its capability to determine the shelf life of chicken fresh cuts is still debated, especially for portable devices. The aim of the study was to compare bench-top and portable NIR instruments in discriminating between four chicken breast refrigeration times (RT), coupled with multivariate classifier models. Ninety-six samples were analysed by both NIR tools at 2, 6, 10 and 14 days post-mortem. NIR data were subsequently submitted to partial least squares discriminant analysis (PLS-DA) and canonical discriminant analysis (CDA). The latter was preceded by double feature selection based on Boruta and Stepwise procedures. PLS-DA sorted moderate separation of RT theses, while shelf life assessment was more accurate on application of Stepwise-CDA. Bench-top tool had better performance than portable one, probably because it captured more informative spectral data as shown by the variable importance in projection (VIP) and restricted pool of Stepwise-CDA predictive scores (SPS). NIR tools coupled with a multivariate model provide deep insight into the physicochemical processes occurring during storage. Spectroscopy showed reliable effectiveness to recognise a 7-day shelf life threshold of breasts, suitable for routine at-line application for screening of meat quality.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Elise A. Kho ◽  
Jill N. Fernandes ◽  
Andrew C. Kotze ◽  
Glen P. Fox ◽  
Maggy T. Sikulu-Lord ◽  
...  

Abstract Background Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, thereby preventing losses in production and flock welfare. We previously demonstrated the ability of visible–near-infrared (Vis–NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we report our investigation of whether variation in sheep type and environment affect the prediction accuracy of Vis–NIR spectroscopy in quantifying blood in faeces. Methods Visible–NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales, Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387–609 nm) using partial least squares regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). Samples from QLD were quantified using Hemastix® test strip and FAMACHA© diagnostic test scores. Results Principal component analysis showed that location, class of sheep and pooled versus individual samples were factors affecting the Hb predictions. The models successfully differentiated ‘healthy’ SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity 57–94%, specificity 44–79%). The models were not predictive for blood in the naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of the QLD samples, however, identified a difference between samples containing high and low quantities of blood. Conclusion This study demonstrates the potential of Vis–NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture sufficient environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


2019 ◽  
Vol 943 ◽  
pp. 95-99
Author(s):  
Li Jun Wang ◽  
Kazuo Umemura

Optical absorption spectroscopy provides evidence for individually dispersed carbon nanotubes. A common method to disperse SWCNTs into aqueous solution is to sonicate the mixture in the presence of a double-stranded DNA (dsDNA). In this paper, optical characterization of dsDNA-wrapped HiPco carbon nanotubes (dsDNA-SWCNT) was carried out using near infrared (NIR) spectroscopy and photoluminescence (PL) experiments. The findings suggest that SWCNT dispersion is very good in the environment of DNA existing. Additionally, its dispersion depends on dsDNA concentration.


Sign in / Sign up

Export Citation Format

Share Document