scholarly journals The impact of shear wall location on the seismic response of RC frame buildings resting on sloping ground

2019 ◽  
Vol 2 (1) ◽  
pp. 61-68
Author(s):  
Upama Acharya ◽  
Jagat Kumar Shrestha

It is observed during the past earthquakes, buildings in hilly regions have experienced high degree of damage leading to collapse though they have been designed for safety of the occupants against natural hazards. Hence, while adopting practice of multistory buildings in these hilly and seismically active areas, utmost care should be taken for making these buildings earthquake resistant. For the buildings on sloping ground, the height of columns below plinth level is not same which affects the performance of building during earthquake. Hence to improve the seismic performance of building shear walls play very important role.It is very necessary to determine the most effective location of shear walls. Shear wall arrangement must be accurate, because if not, it will cause negative effect instead. This paper is aimed at predicting the effect of positioning RC shear wall of different shape on the structural response of RC building resting on sloping ground. Eight models have been prepared considering earth pressure and without considering earth pressure. The displacement of building is to be determined by nonlinear static pushover analysis. For the purpose of pushover analysis and response spectrum analysis finite element-based software SAP 2000 has been utilized.

Author(s):  
Gajagantarao Sai Kumar ◽  
Purushotham Rao ◽  
Partheepan Ganesan

Multi-storey buildings tend to get damaged mainly during earthquake. Seismic analysis is a tool for the estimation of structural response in the process of designing earthquake resistant structures and/or retrofitting vulnerable existing structures. The principle purpose of this work is to analyze and design a building with a shear wall and also to find the appropriate position of shear wall that result in maximum resistance towards lateral forces and minimum displacement of the structure. In this study, a G+7 multi-storey building of 15 m ×20 m in plan area has been chosen and modelled using ETABS. The developed model was validated by solving manually and the results were validated in ETABS. Thereafter, 4 different new plans were modelled in ETABS located in the same earthquake zone area. These plans have shear wall concepts are implemented on the building at four different locations. Seismic, vibration and response spectrum analysis were performed on these structures. Salient parameters such as storey stiffness, storey displacement and storey drift were computed using the ETABS model. These were compared with that of the frame having no shear walls. By comparing the results obtained at different shear wall locations, the best plan with the shear wall having minimum lateral storey displacement and maximum stiffness is suggested for this location.


Buildings that rest on sloping ground are different from those that rest on level ground. Buildings located on sloping ground are much more prone to earthquakes because they are, in general, irregular, asymmetrical and tensional. Therefore, the movement of the ground affects them much more. Therefore, there is increased insertion of the shear wall to resist side loading. In this work, the multi-storey building G + 20 is analyzed on slopes of 0o and 24o. For the improvement and analysis of full-filled shear walls, GMT, type L and type C soft soil is used. The structure is analyzed by the response spectrum method and responses such as displacement, ground deviation, period and base slices are evaluated and compared using E-TAB software.


Author(s):  
Kesava Rao B, Et. al.

In recent years, the construction of skyscrapers has been on the rise to overcome the shortage of land. These buildings are subject to an external lateral force, such as an earthquake and wind pressure. Pushover analysis (POA) has been broadly used in predicting the earthquake response of structures, and shear walls have been shown to be lateral drag elements. Therefore, in the present work, the effect of placing a shear wall on the periphery symmetrically, the periphery asymmetrically and in the center of the building is performed using the ETABS software. Using the response spectrum methodand thetime history method, a dynamic analysis is performed. Responses such as floor shear, floor displacement, and lateral floor shifts due to seismic forces are evaluated for various locations of the shear wall. According to the results and analysis, the shear wall on the symmetrical periphery of the structure is reducing the displacement and deviation of the floor compared to other cases.


2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
G. Muthukumar ◽  
Manoj Kumar

Shear walls have been conferred as a major lateral load resisting element in a building in any seismic prone zone. It is essential to determine behavior of shear wall in the preelastic and postelastic stage. Shear walls may be provided with openings due to functional requirement of the building. The size and location of opening may play a significant role in the response of shear walls. Though it is a well known fact that size of openings affects the structural response of shear walls significantly, there is no clear consensus on the behavior of shear walls under different opening locations. The present study aims to study the dynamic behavior of shear walls under various opening locations using nonlinear finite element analysis using degenerated shell element with assumed strain approach. Only material nonlinearity has been considered using plasticity approach. A five-parameter Willam-Warnke failure criterion is considered to define the yielding/crushing of the concrete with tensile cutoff. The time history responses have been plotted for all opening cases with and without ductile detailing. The analysis has been done for different damping ratios. It has been observed that the large number of small openings resulted in better displacement response.


2007 ◽  
Vol 340-341 ◽  
pp. 1115-1120
Author(s):  
Shi Yun Xiao ◽  
Hong Nan Li ◽  
Yan Gang Zhao ◽  
Jing Wei Zhang

This paper focuses on an experimental investigation and theoretical analysis of different types of RC shear wall with the profile steel braces in two side columns and diagonal profile steel braces of walls subjected to applied repeated cyclic loads. Fifteen RC shear walls with different shear span ratio are tested and their aseismic charactertics are studied. The effect of profile steel bracings on failure property, bearing capacity, ductility and hysteretical characteristic of shear wall is investigated based on experimental results. It is shown that adding the profile steel braces on the boundary column and inner of walls can obviously enhance the ultimate strength of specimens and improve their aseismic characteristics. Finally, the mechanical model of the shear wall is presented and the formulae for calculating the load-carrying capacity are developed. Numerical analyses indicate that the theoretical results agree well with those from experiments.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Francisco J. Molina ◽  
Pierre Pegon ◽  
Pierre Labbé

The response of 13 reinforced concrete shear walls submitted to successive seismic tests has been postprocessed to produce time histories of secant stiffness and displacement oscillation amplitude. For every wall an envelope curve of displacement amplitude versus stiffness is identified which is fairly modelled by a straight line in double logarithmic scale. This relatively simple model, when used as a capacity line in combination with the demand response spectrum, is able to predict in an approximate manner the maximum response to the applied earthquakes. Moreover, the graphic representation of the demand spectrum and a unique model capacity line for a group of equal walls with different assumed design frequencies on them gives a visual interpretation of the different safety margins observed in the experiments for the respective walls. The same method allows as well constructing vulnerability curves for any design frequency or spectrum. Finally, the comparison of the different identified line models for the different walls allows us to assess the qualitative effect on the behaviour of parameters such as the reinforcement density or the added normal load.


2012 ◽  
Vol 193-194 ◽  
pp. 1216-1220 ◽  
Author(s):  
Kai Huang ◽  
Li Hua Zou ◽  
Jian Mei Chen

To understand the higher modal effect on the accuracy of pushover analysis for shear wall structure, the influence of damage on the vibration characteristics of shear-wall structures is investigated. Employing the continuum technique, the shift of modal shapes and periods for the first three modes is obtained when the plastic zone exists in the bottom of the shear wall. It can be conclude that plastic zone may enhance the higher modal effect when the internal force responses of shear walls are considered. The higher modal contribution can not be neglected when computing the nonlinear earthquake responses of shear wall structures.


Sign in / Sign up

Export Citation Format

Share Document