scholarly journals Physical Modelling of Flow and Head along with Dead-end and Looped Manifolds

2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Abdullah Amer ◽  
Thamer Ahmad Mohammad ◽  
Wissam Hameed Alawee ◽  
Nadhir Al-Ansari

In this study, physical models were designed and fabricated to investigate the hydraulic behaviour of dead-end and looped PVC manifolds. The physical models consisted of a water supply tank with overflow, PVC manifolds, steel supports, collection tank, pump, pressure sensors and valves to allow flow control. Throughout the study, the water level in the supply tank was kept constant. The hydraulic behaviour of dead-end manifolds was investigated using different spacing, S between outlets (S= 3m, S=2.5m, S=2m, S=1.5m, and S=0.75m). The hydraulic behaviour of looped manifolds was investigated using a single outlet spacing of 1.5m. The comparison between the hydraulic behaviour of looped and dead-end manifolds was carried out using the data of the 1.5m outlet spacing. The value of uniformity, U for dead-end and looped manifolds was 82% and 92%, respectively. The value of friction ratio, fn/f1, was found to be 33 and 0.18 for dead-end and looped manifolds, respectively. The experimental data of this study were used to validate selected formulae for estimation of the friction correction factor (G Factor). The results showed that the equation proposed by Alazba et al. (2012) yielded the most satisfactory estimation. The performance of the selected formulae was tested using two statistical indices.

2019 ◽  
Author(s):  
Liwei Cao ◽  
Danilo Russo ◽  
Vassilios S. Vassiliadis ◽  
Alexei Lapkin

<p>A mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed to identify physical models from noisy experimental data. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the number of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was coupled with the collection of experimental data in an automated fashion, and was proven to be successful in identifying the correct physical models describing the relationship between the shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of reactions. Future work will focus on addressing the limitations of the formulation presented in this work, by extending it to be able to address larger complex physical models.</p><p><br></p>


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1968 ◽  
Author(s):  
Sylvie Bilent ◽  
Thi Hong Nhung Dinh ◽  
Emile Martincic ◽  
Pierre-Yves Joubert

This paper reports on the study of microporous polydimethylsiloxane (PDMS) foams as a highly deformable dielectric material used in the composition of flexible capacitive pressure sensors dedicated to wearable use. A fabrication process allowing the porosity of the foams to be adjusted was proposed and the fabricated foams were characterized. Then, elementary capacitive pressure sensors (15 × 15 mm2 square shaped electrodes) were elaborated with fabricated foams (5 mm or 10 mm thick) and were electromechanically characterized. Since the sensor responses under load are strongly non-linear, a behavioral non-linear model (first order exponential) was proposed, adjusted to the experimental data, and used to objectively estimate the sensor performances in terms of sensitivity and measurement range. The main conclusions of this study are that the porosity of the PDMS foams can be adjusted through the sugar:PDMS volume ratio and the size of sugar crystals used to fabricate the foams. Additionally, the porosity of the foams significantly modified the sensor performances. Indeed, compared to bulk PDMS sensors of the same size, the sensitivity of porous PDMS sensors could be multiplied by a factor up to 100 (the sensitivity is 0.14 %.kPa−1 for a bulk PDMS sensor and up to 13.7 %.kPa−1 for a porous PDMS sensor of the same dimensions), while the measurement range was reduced from a factor of 2 to 3 (from 594 kPa for a bulk PDMS sensor down to between 255 and 177 kPa for a PDMS foam sensor of the same dimensions, according to the porosity). This study opens the way to the design and fabrication of wearable flexible pressure sensors with adjustable performances through the control of the porosity of the fabricated PDMS foams.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 461
Author(s):  
Weixiang Ni ◽  
Jian Zhang ◽  
Sheng Chen

In the long-distance and high-drop gravitational water supply systems, the water level difference between the upstream and downstream is large. Thus, it is necessary to ensure energy dissipation and pressure head reduction to reduce the pipeline pressure head. The energy dissipation box is a new type of energy dissipation and pressure head reduction device, which is widely used in the gravitational flow transition systems. At present, there is still a dearth of systematic knowledge about the performance of energy dissipation boxes. In this paper, a relationship between the location of the energy dissipation box and the pressure head amplitude is established, a theoretical optimal location equation of the energy dissipation box is derived, and numerical simulations using an engineering example are carried out for verification. The protective effects of an energy dissipation box placed at the theoretical optimal location and an upstream location are compared. The results indicate that for the same valve action time, the optimal position allows effectively reducing the total volume of energy dissipation box. The oscillation amplitudes of the water level in the box and the pressure head behind the box are markedly reduced. Under the condition that the water level oscillation of the energy dissipation box is almost the same, the optimal location offers better pressure head reduction protection performance than the upstream location.


1984 ◽  
Vol 64 (2) ◽  
pp. 505-543 ◽  
Author(s):  
J. M. Drazen ◽  
R. D. Kamm ◽  
A. S. Slutsky

Complete physiological understanding of HFV requires knowledge of four general classes of information: 1) the distribution of airflow within the lung over a wide range of frequencies and VT (sect. IVA), 2) an understanding of the basic mechanisms whereby the local airflows lead to gas transport (sect. IVB), 3) a computational or theoretical model in which transport mechanisms are cast in such a form that they can be used to predict overall gas transport rates (sect. IVC), and 4) an experimental data base (sect. VI) that can be compared to model predictions. When compared with available experimental data, it becomes clear that none of the proposed models adequately describes all the experimental findings. Although the model of Kamm et al. is the only one capable of simulating the transition from small to large VT (as compared to dead-space volume), it fails to predict the gas transport observed experimentally with VT less than equipment dead space. The Fredberg model is not capable of predicting the observed tendency for VT to be a more important determinant of gas exchange than is frequency. The remaining models predict a greater influence of VT than frequency on gas transport (consistent with experimental observations) but in their current form cannot simulate the additional gas exchange associated with VT in excess of the dead-space volume nor the decreased efficacy of HFV above certain critical frequencies observed in both animals and humans. Thus all of these models are probably inadequate in detail. One important aspect of these various models is that some are based on transport experiments done in appropriately scaled physical models, whereas others are entirely theoretical. The experimental models are probably most useful in the prediction of pulmonary gas transport rates, whereas the physical models are of greater value in identifying the specific transport mechanism(s) responsible for gas exchange. However, both classes require a knowledge of the factors governing the distribution of airflow under the circumstances of study as well as requiring detail about lung anatomy and airway physical properties. Only when such factors are fully understood and incorporated into a general description of gas exchange by HFV will it be possible to predict or explain all experimental or clinical findings.


Water Policy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 91-107 ◽  
Author(s):  
Fawen Li ◽  
Dong Yu ◽  
Yong Zhao ◽  
Runxiang Cao

Abstract Drought is one of the major natural disasters affecting the development of economies and society. Drought early warning is the primary step and most important non-engineering measure for drought relief. This paper took Yuqiao Reservoir in Tianjin as a case study and analysed inter-annual changes of the drought limit water level. First, the causality between variables in the water supply–demand system was analysed, and a structural diagram of water sources allocation was drawn. Coupled with the parameters and a structural diagram, a system dynamics (SD) model of the water supply volume was established. Secondly, simulation results were tested to ensure that the model was valid. The water supply volume from 2003 to 2020 was simulated by using the model. Finally, based on the inflow process and the water supply volume, the drought limit water level was calculated. The results showed the water supply volume of Yuqiao Reservoir has changed remarkably. The drought limit water levels in 2003–2012 and in 2016–2020 were 16.70 m and 16.30 m, respectively: a difference of 0.40 m. The regulation curve of guarantee for water supply during 2016–2020 is significantly lower than that of 2003–2012. This research is of great significance for drought resistance, disaster mitigation and reservoir management.


2014 ◽  
Vol 1044-1045 ◽  
pp. 755-758
Author(s):  
Xin Hui Yang

This paper provides a design for a PLC-based, variable-frequency governing, pressure-constant, automatic water-supply control system. This design is based on the current situations at the water supply plants found in small and medium cities in China. In this control system, the pressure signal across the pipe network is acquired by pressure sensors and then transmitted to PID modules in the PLC in order to control switching between pump motors. At the same time, the PLC is connected with a personal computer for industrial control purposes. On this computer, monitoring and control software has been installed in order to monitor and control the pressure-constant water-supply system on a real-time basis.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Ahmed M Helmi

Floodways, where a road embankment is permitted to be overtopped by flood water, are usually designed as broad-crested weirs. Determination of the water level above the floodway is crucial and related to road safety. Hydraulic performance of floodways can be assessed numerically using 1-D modelling or 3-D simulation using computational fluid dynamics (CFD) packages. Turbulence modelling is one of the key elements in CFD simulations. A wide variety of turbulence models are utilized in CFD packages; in order to identify the most relevant turbulence model for the case in question, 96 3-D CFD simulations were conducted using Flow-3D package, for 24 broad-crested weir configurations selected based on experimental data from a previous study. Four turbulence models (one-equation, k-ε, RNG k-ε, and k-ω) ere examined for each configuration. The volume of fluid (VOF) algorithm was adopted for free water surface determination. In addition, 24 1-D simulations using HEC-RAS-1-D were conducted for comparison with CFD results and experimental data. Validation of the simulated water free surface profiles versus the experimental measurements was carried out by the evaluation of the mean absolute error, the mean relative error percentage, and the root mean square error. It was concluded that the minimum error in simulating the full upstream to downstream free surface profile is achieved by using one-equation turbulence model with mixing length equal to 7% of the smallest domain dimension. Nevertheless, for the broad-crested weir upstream section, no significant difference in accuracy was found between all turbulence models and the one-dimensional analysis results, due to the low turbulence intensity at this part. For engineering design purposes, in which the water level is the main concern at the location of the flood way, the one-dimensional analysis has sufficient accuracy to determine the water level.


2020 ◽  
Author(s):  
AmirAbbas Eslami Shafigh ◽  
Pante'a Davoudifar

Abstract We announce PHIT as a numerical model for simulating of hadroproduction and compare our results with other models and experimental data. Our code, although very simple, imitates the expected results acceptably compared to other more detailed physical models. Moreover, PHIT is fast and easily executable on an ordinary PC. These advantages make PHIT an ideal choice for practical applications of an event generator.


Paleobiology ◽  
1989 ◽  
Vol 15 (4) ◽  
pp. 402-413 ◽  
Author(s):  
Susan Rigby ◽  
Barrie Rickards

Physical models of graptolites have been constructed for a range of morphologies, with emphasis on planar, multiramous forms. The models are life size and have the density of a living graptolite, based on the now-established collagenous nature of the periderm and unavoidable assumptions about the amount of extrathecal tissue present in the living colony. These models have been used to test the two main hypotheses of graptolite life habit developed by Bulman, Rickards, Kirk, and others. Testing of graptoloid models in water suggests that many rhabdosome shapes were designed for passive rotation within the water column. This is caused in the models by a variety of modifications, including changes in thecal and stipe orientation, alterations of colony shape and the addition of vanes and hooks. Rotation would only have been useful when the rhabdosome was in directional motion and the frequency of such modifications seems anomalous if no such movement occurred. Thus movement by some means is required, either passively, by changes in buoyancy, or by automobility. Spiralling action would increase the harvesting path of an individual living on a planar, multiramous colony, making this a theoretically advantageous mode of life for the morphology. It would prevent the individual zooids of scandent biserial and uniserial colonies from feeding from the same narrow band of water.


Sign in / Sign up

Export Citation Format

Share Document