scholarly journals Assessing meander belt width of Bhagirathi-Jalangi river system in lower Ganga delta, India

2020 ◽  
Vol 11 (1) ◽  
pp. 140-162
Author(s):  
Aznarul ISLAM ◽  
◽  
Balai Chandra DAS ◽  
Nishith Kumar MAJI ◽  
Suman Deb BARMAN ◽  
...  

The present work is an attempt to assess the meander belt width of the river Bhagirathi (frequently oscillating) and river Jalangi (relatively stable) in West Bengal, India based on geospatial data and field data (lithological composition and flow characteristics). Belt width has been computed using four major considerations in increasing order of scale- (i) individual loops of the present channel (MBw1), (ii) maximum loop width of the present channel (MBw2), (iii) palaeo channel characteristics identified through normalized difference water index and pixel-based classification coupled with field observation (MBw3) and (iv) future channel based on the factor of safety which is a space-time averaged safe belt width (MBw4). The study found MBw4 of 11.76 km for Bhagirathi and 6.64 km for Jalangi considering the 100-year factor of safety. The higher meander belt width of Bhagirathi in comparison to Jalangi was found to be correlated with higher monsoon discharge, bed slope, stream power, shear stress, suspended surface sediment concentration, D50, and lower relative bed stability.

2020 ◽  
Vol 963 (9) ◽  
pp. 53-64
Author(s):  
V.F. Kovyazin ◽  
Thi Lan Anh Dang ◽  
Viet Hung Dang

Tram Chim National Park in Southern Vietnam is a wetland area included in the system of specially protected natural areas (SPNA). For the purposes of land monitoring, we studied Landsat-5 and Sentinel-2B images obtained in 1991, 2006 and 2019. The methods of normalized difference vegetation index (NDVI) and water objects – normalized difference water index (NDWI) were used to estimate the vegetation in National Park. The allocated land is classifi ed by the maximum likelihood method in ENVI 5.3 into categories. For each image, a statistical analysis of the land after classifi cation was performed. Between 1991 and 2019, land changes occurred in about 57 % of the Tram Chim National Park total area. As a result, the wetland area has signifi cantly reduced there due to climate change. However, the area of Melaleuca forests in Tram Chim National Park has increased due to the effi ciency of reforestation in protected areas. Melaleuca forests are also being restored.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Acácio ◽  
Ralf H. E. Mullers ◽  
Aldina M. A. Franco ◽  
Frank J. Willems ◽  
Arjun Amar

AbstractAnimal movement is mainly determined by spatial and temporal changes in resource availability. For wetland specialists, the seasonal availability of surface water may be a major determinant of their movement patterns. This study is the first to examine the movements of Shoebills (Balaeniceps rex), an iconic and vulnerable bird species. Using GPS transmitters deployed on six immature and one adult Shoebills over a 5-year period, during which four immatures matured into adults, we analyse their home ranges and distances moved in the Bangweulu Wetlands, Zambia. We relate their movements at the start of the rainy season (October to December) to changes in Normalized Difference Water Index (NDWI), a proxy for surface water. We show that Shoebills stay in the Bangweulu Wetlands all year round, moving less than 3 km per day on 81% of days. However, average annual home ranges were large, with high individual variability, but were similar between age classes. Immature and adult Shoebills responded differently to changes in surface water; sites that adults abandoned became drier, while sites abandoned by immatures became wetter. However, there were no differences in NDWI of areas used by Shoebills before abandonment and newly selected sites, suggesting that Shoebills select areas with similar surface water. We hypothesise that the different responses to changes in surface water by immature and adult Shoebills are related to age-specific optimal foraging conditions and fishing techniques. Our study highlights the need to understand the movements of Shoebills throughout their life cycle to design successful conservation actions for this emblematic, yet poorly known, species.


Author(s):  
Suwarsono ◽  
Jalu Tejo Nugroho ◽  
Wiweka

Flood disaster is a major issues due to its frequently events on several areas in Indonesia. Delineation of inundated area caused by flood is needed to support disaster emergency response. The objective of this research was to identify inundated areas using NDWI methos from Landsat TM/ETM+ data on lowland regions of Java island. A pair of the data (before and during the flood) were in each observation areas. Observation areas were selected in several location of lowland regions of Java island where great event of flood occurred during the last decades. The thresholds values of NDWI change were used to separate the flood and non flood areas. The results showed that the extent of inundated area caused by flood on lowland regions can be identifyed and separated based on NDWI variables extracted from Landsat TM/ETM+.


2020 ◽  
Author(s):  
Long Ho ◽  
Ruben Jerves-Cobo ◽  
Matti Barthel ◽  
Johan Six ◽  
Samuel Bode ◽  
...  

Abstract. Rivers act as a natural source of greenhouse gases (GHGs) that can be released from the metabolisms of aquatic organisms. Anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG emissions. To investigate these impacts, we assessed the emissions of CO2, CH4, and N2O from Cuenca urban river system (Ecuador). High variation of the emissions was found among river tributaries that mainly depended on water quality and neighboring landscapes. By using Prati and Oregon Indexes, a clear pattern was observed between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality deteriorated from acceptable to very heavily polluted, their global warming potential (GWP) increased by ten times. Compared to the average estimated emissions from global streams, rivers with polluted water released almost double the estimated GWP while the proportion increased to ten times for very heavily polluted rivers. Conversely, the GWP of good-water-quality rivers was half of the estimated GWP. Furthermore, surrounding land-use types, i.e. urban, roads, and agriculture, significantly affected the river emissions. The GWP of the sites close to urban areas was four time higher than the GWP of the nature sites while this proportion for the sites close to roads or agricultural areas was triple and double, respectively. Lastly, by applying random forests, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the emissions. Conversely, low impact of organic matter and nitrate concentration suggested a higher role of nitrification than denitrification in producing N2O. These results highlighted the impacts of land-use types on the river emissions via water contamination by sewage discharges and surface runoff. Hence, to estimate of the emissions from global streams, both their quantity and water quality should be included.


2021 ◽  
Author(s):  
Massimo Micieli ◽  
Gianluca Botter ◽  
Giuseppe Mendicino ◽  
Alfonso Senatore

<p>UAVs (Unmanned Aerial Vehicles) are increasingly used for monitoring river networks with a broad range of purposes. In this contribution, we focus on the use of multispectral sensors, either in the thermal infrared band LWIR (Long-wavelength infrared, 8-15 µm) or in the infrared band NIR (Near-infrared, 0.75-1.4 µm) to map network dynamics in temporary streams. Specifically, we discuss the first results of a set of surveys carried out in 2020 within a small river catchment located in northern Calabria (southern Italy), as part of the research activities of the ERC-funded DyNET project. Preliminary, a rigorous methodology was identified to perform on-site surveys and to process and analyse the acquired images. Experimental results show that the combined use of LWIR and NIR sensors is a suitable solution for detecting water presence in channels characterized by different hydraulic and morphologic conditions. LWIR sensors alone allow one to discriminate water presence only when the thermal contrast with the surrounding environment is high. On the other hand, NIR sensors permit to detect the presence of water in most of the analyzed settings through the estimate of the Normalized Difference Water Index (NDWI). However, NIR sensors can be misled in case of shallow water depth, due to the NIR radiation emitted by the riverbed merging with that of the water. Overall, the study demonstrates that a combined LWIR/NIR approach allows addressing a broader range of conditions. Moreover, the information provided can be further enhanced by combining it with geomorphologic information and basic hydraulic concepts.</p>


Sign in / Sign up

Export Citation Format

Share Document