scholarly journals Investigations on global buckling behaviour of concrete-filled double-skinned steel tubular columns

Author(s):  
U. Mashudha Sulthana ◽  
S. Arul Jayachandran

Concrete-Filled Double-skinned Steel Tubular columns (CFDST) are proved to possess exceptional structural resistance in case of fire and multi-hazard situations. This superior quality of CFDST makes it preferable in long column applications. However, studies on the long column behaviour of CFDST is very few, and their results are not in line with the behaviour of CFST long columns. Whereas, several researches on stub column CFDST shows that, the axial compression behaviour of CFDST is similar to CFST. In this paper, selected results (4 numbers of circular CFDST specimens) from a large test data is presented. Axial compression behaviour of long column CFDST specimens is studied, with non-dimensional slenderness λ around 1.0, and hollowness ratio as the governing parameter for study. Test results namely, axial load carrying capacity, axial deformation and lateral deflection are presented in this paper. Numerical models are also developed and validated with the experimental results, to carry out more parametric studies. Further, the experimental axial capacity values are compared with modified capacity equations from EC4 and AISC. Results show that extended EC4 and AISC equations gives conservative predictions for CFDST column even in the long column range. Moreover, the initial imperfections in the specimen and their corresponding boundary conditions for load application, are found to be governing parameters in long column buckling study.

Structures ◽  
2017 ◽  
Vol 9 ◽  
pp. 157-164 ◽  
Author(s):  
Sulthana U. M. ◽  
Jayachandran S. A.

2021 ◽  
Vol 64 (4) ◽  
pp. 251-260
Author(s):  
Sangeetha Palanivelu ◽  
Dhinagaran Moorthy ◽  
Gobinaath Subramani ◽  
Jeevan Dhayanithi

The experimental and analytical evaluation of externally reinforced square and circular cold-formed steel tubular columns with GFRP strips is presented in this study. Under axial compression, fourteen tubular columns with pinned support, seven square tubular sections, and seven circular hollow section columns with externally bonded GFRP strips at various points were tested to failure. The GFRP strips improved the load-carrying capacity of the columns according to the trial results. The GFRP strip at the ends and intermediate regions, with a clear spacing of 100 to 150 mm between the strips, has been proven to be the most effective in achieving ultimate strength, especially for column specimens with full wrapping. Wrapping the GFRP strips increases the strength of square and circular columns by 24 % and 5%, respectively, when compared to unwrapped specimens. The percentage gain in strength is 16% when the cross-section is changed from circular to square. Local and overall flexural buckling, respectively, are the failure modes seen in the square and circular sections. The experimental strength and axial deformation were compared to the analytical results, which showed a satisfactory correlation.


2021 ◽  
pp. 113986
Author(s):  
Arvind Sharda ◽  
Allan Manalo ◽  
Wahid Ferdous ◽  
Yu Bai ◽  
Lachlan Nicol ◽  
...  

2012 ◽  
Vol 61 ◽  
pp. 196-203 ◽  
Author(s):  
T. Yu ◽  
B. Zhang ◽  
Y.B. Cao ◽  
J.G. Teng

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Muhammmad Faisal Javed ◽  
Haris Rafiq ◽  
Mohsin Ali Khan ◽  
Fahid Aslam ◽  
Muhammad Ali Musarat ◽  
...  

This experimental study presents concrete-filled double-skin tubular columns and demonstrates their expected advantages. These columns consist of an outer steel tube, an inner steel tube, and concrete sandwiched between two tubes. The influence of the outer-to-inner tube dimension ratio, outer tube to thickness ratio, and type of inner tube material (steel, PVC pipe) on the ultimate axial capacity of concrete-filled double-skin tubular columns is studied. It is found that the yield strength of the inner tube does not significantly affect the ultimate axial capacity of concrete-filled double-skin tubular composites. With the replacement of the inner tube of steel with a PVC pipe, on average, less than 10% strength is reduced, irrespective of size and dimensions of the steel tube. Hence, the cost of a project can be reduced by replacing inner steel tubes with a PVC pipes. Finally, the experimental results are compared with the existing design methods presented in AISC 360-16 (2016), GB51367 (2019), and EC4 (2004). It is found from the comparison that GB51367 (2019) gives better results, followed by AISC (2016) and EC4 (2004).


Author(s):  
Tahir Mehmood ◽  
Ahsen Maqsoom ◽  
Adnan Nawaz ◽  
Badar-Ul Ali Zeeshan

Recent studies show that code-based equations usually do not provide an accurate estimate for the shear strength of short reinforced concrete (RC) walls due to the negligence of many important factors including the beneficial effect of axial compression. In the current study, quasi-static reversed cyclic testing is conducted for two RC wall specimens, one under axial load and one without axial load to assess the effect of the axial compression on the shear strength of RC walls in high-rise buildings. The results of the experimental study show that the axial compression load significantly improves the shear strength of RC walls. Results are also compared with the performance-based seismic evaluation code practices. Based on the experimental findings, recommendations are made for improvements in the existing codes. The experimental results are further compared with different numerical models to explore the suitable computer modeling options for non-linear response prediction of RC walls.


Sign in / Sign up

Export Citation Format

Share Document