Are We Ready to investigate Cognitive Function of Fetal Brain? The Role of Advanced Four-dimensional Sonography

Author(s):  
Aida Salihagic Kadic ◽  
Lara Spalldi Barisic

ABATRACT Human brain is fascinating organ in so many ways. Some of its cognitive functions, such as ability to learn, memorize, think, percept different sensations, such as pain, to have emotion, process audio-visual inputs, and to coordinate reaction and movements have been subjects of studies for many years. Yet, till recently, we could only make assumptions about prenatal activities, interactions and its construction of complex structures in the time frame of antenatal life. With the prenatal assessment (sonoembryology, neurosonoembryology, KANET test, etc.) by latest advanced HDlive, Silhouette and Flow 3D/4D imaging there is possibility to follow in continuity normal structural and functional development from the early beginnings of “life” and on the other hand consider what might be different (not necessarily abnormal) and deviate from normal development and behavior. On this way, we are able to supplement knowledge of fundamental building blocks of development of fetal cognitive functions, to pay more attention and follow up fetuses at higher risk and finally find some of the possible origins of cognitive dysfunctions which may manifest in childhood or later in life.82 With the introduction of different 3D/4D ultrasound modes we have ability to observe all of this in vivo while emerging, and make “time-lapse” of fetal neurodevelopment and behavior in correlation to its cognitive functional development How to cite this article Kurjak A, Spalldi Barisic L, Stanojevic M, Salihagic Kadic A, Porovic S. Are We Ready to investigate Cognitive Function of Fetal Brain? The Role of Advanced Fourdimensional Sonography. Donald School J Ultrasound Obstet Gynecol 2016;10(2):116-124.

2021 ◽  
Vol 12 ◽  
Author(s):  
Saul Lema A ◽  
Marina Klemenčič ◽  
Franziska Völlmy ◽  
Maarten Altelaar ◽  
Christiane Funk

Caspases are proteases, best known for their involvement in the execution of apoptosis—a subtype of programmed cell death, which occurs only in animals. These proteases are composed of two structural building blocks: a proteolytically active p20 domain and a regulatory p10 domain. Although structural homologs appear in representatives of all other organisms, their functional homology, i.e., cell death depending on their proteolytical activity, is still much disputed. Additionally, pseudo-caspases and pseudo-metacaspases, in which the catalytic histidine-cysteine dyad is substituted with non-proteolytic amino acid residues, were shown to be involved in cell death programs. Here, we present the involvement of a pseudo-orthocaspase (SyOC), a prokaryotic caspase-homolog lacking the p10 domain, in oxidative stress in the model cyanobacterium Synechocystis sp. PCC 6803. To study the in vivo impact of this pseudo-protease during oxidative stress its gene expression during exposure to H2O2 was monitored by RT-qPCR. Furthermore, a knock-out mutant lacking the pseudo-orthocaspase gene was designed, and its survival and growth rates were compared to wild type cells as well as its proteome. Deletion of SyOC led to cells with a higher tolerance toward oxidative stress, suggesting that this protein may be involved in a pro-death pathway.


2021 ◽  
Vol 22 (21) ◽  
pp. 11504
Author(s):  
Ewelina Madej ◽  
Damian Ryszawy ◽  
Anna A. Brożyna ◽  
Malgorzata Czyz ◽  
Jaroslaw Czyz ◽  
...  

The receptor-interacting protein kinase 4 (RIPK4) plays an important role in the development and maintenance of various tissues including skin, but its role in melanoma has not been reported. Using patient-derived cell lines and clinical samples, we show that RIPK4 is expressed in melanomas at different levels. This heterogenous expression, together with very low level of RIPK4 in melanocytes, indicates that the role of this kinase in melanoma is context-dependent. While the analysis of microarray data has revealed no straightforward correlation between the stage of melanoma progression and RIPK4 expression in vivo, relatively high levels of RIPK4 are in metastatic melanoma cell lines. RIPK4 down-regulation by siRNA resulted in the attenuation of invasive potential as assessed by time-lapse video microscopy, wound-healing and transmigration assays. These effects were accompanied by reduced level of pro-invasive proteins such as MMP9, MMP2, and N-cadherin. Incubation of melanoma cells with phorbol ester (PMA) increased PKC-1β level and hyperphosphorylation of RIPK4 resulting in degradation of RIPK4. Interestingly, incubation of cells with PMA for short and long durations revealed that cell migration is controlled by the NF-κB signaling in a RIPK4-dependent (RIPK4high) or independent (RIPK4low) manner depending on cell origin (distant or lymph node metastasis) or phenotype (mesenchymal or epithelial).


2014 ◽  
Vol 16 (3) ◽  
pp. 307-320 ◽  

Obesity is now epidemic worldwide. Beyond associated diseases such as diabetes, obesity is linked to neuropsychiatric disorders such as depression. Alarmingly maternal obesity and high-fat diet consumption during gestation/lactation may "program" offspring longterm for increased obesity themselves, along with increased vulnerability to mood disorders. We review the evidence that programming of brain and behavior by perinatal diet is propagated by inflammatory mechanisms, as obesity and high-fat diets are independently associated with exaggerated systemic levels of inflammatory mediators. Due to the recognized dual role of these immune molecules (eg, interleukin [IL]-6, 11-1β) in placental function and brain development, any disruption of their delicate balance with growth factors or neurotransmitters (eg, serotonin) by inflammation early in life can permanently alter the trajectory of fetal brain development. Finally, epigenetic regulation of inflammatory pathways is a likely candidate for persistent changes in metabolic and brain function as a consequence of the perinatal environment.


2021 ◽  
Author(s):  
William C Carlquist ◽  
Eric N Cytrynbaum

The patterns formed both in vivo and in vitro by the Min protein system have attracted much interest because of the complexity of their dynamic interactions given the apparent simplicity of the component parts. Despite both the experimental and theoretical attention paid to this system, the details of the biochemical interactions of MinD and MinE, the proteins responsible for the patterning, are still unclear. For example, no model consistent with the known biochemistry has yet accounted for the observed dual role of MinE in the membrane stability of MinD. Until now, a statistical comparison of models to the time course of Min protein concentrations on the membrane has not been carried out. Such an approach is a powerful way to test existing and novel models that are difficult to test using a purely experimental approach. Here, we extract time series from previously published fluorescence microscopy time lapse images of in vitro experiments and fit two previously described and one novel mathematical model to the data. We find that the novel model, which we call the Asymmetric Activation with Bridged Stability Model, fits the time-course data best. It is also consistent with known biochemistry and explains the dual MinE role via MinE-dependent membrane stability that transitions under the influence of rising MinE to membrane instability with positive feedback. Our results reveal a more complex network of interactions between MinD and MinE underlying Min-system dynamics than previously considered.


1997 ◽  
Vol 137 (2) ◽  
pp. 493-508 ◽  
Author(s):  
Miguel Angel del Pozo ◽  
Carlos Cabañas ◽  
María C. Montoya ◽  
Ann Ager ◽  
Paloma Sánchez-Mateos ◽  
...  

The recruitment of leukocytes from the bloodstream is a key step in the inflammatory reaction, and chemokines are among the main regulators of this process. During lymphocyte–endothelial interaction, chemokines induce the polarization of T lymphocytes, with the formation of a cytoplasmic projection (uropod) and redistribution of several adhesion molecules (ICAM-1,-3, CD43, CD44) to this structure. Although it has been reported that these cytokines regulate the adhesive state of integrins in leukocytes, their precise mechanisms of chemoattraction remain to be elucidated. We have herein studied the functional role of the lymphocyte uropod. Confocal microscopy studies clearly showed that cell uropods project away from the cell bodies of adhered lymphocytes and that polarized T cells contact other T cells through the uropod structure. Time-lapse videomicroscopy studies revealed that uropod-bearing T cells were able, through this cellular projection, to contact, capture, and transport additional bystander T cells. Quantitative analysis revealed that the induction of uropods results in a 5–10-fold increase in cell recruitment. Uropod-mediated cell recruitment seems to have physiological relevance, since it was promoted by both CD45R0+ peripheral blood memory T cells as well as by in vivo activated lymphocytes. Additional studies showed that the cell recruitment mediated by uropods was abrogated with antibodies to ICAM-1, -3, and LFA-1, whereas mAb to CD43, CD44, CD45, and L-selectin did not have a significant effect, thus indicating that the interaction of LFA-1 with ICAM-1 and -3 appears to be responsible for this process. To determine whether the increment in cell recruitment mediated by uropod may affect the transendothelial migration of T cells, we carried out chemotaxis assays through confluent monolayers of endothelial cells specialized in lymphocyte extravasation. An enhancement of T cell migration was observed under conditions of uropod formation, and this increase was prevented by incubation with either blocking anti– ICAM-3 mAbs or drugs that impair uropod formation. These data indicate that the cell interactions mediated by cell uropods represent a cooperative mechanism in lymphocyte recruitment, which may act as an amplification system in the inflammatory response.


2020 ◽  
Vol 21 (22) ◽  
pp. 8718
Author(s):  
Alessandro Usiello ◽  
Maria Maddalena Di Fiore ◽  
Arianna De Rosa ◽  
Sara Falvo ◽  
Francesco Errico ◽  
...  

The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.


2018 ◽  
Vol 16 (1/2) ◽  
pp. 81-116 ◽  
Author(s):  
Ulla Gain

Cognitive computing is part of AI and cognitive applications consists of cognitive services, which are building blocks of the cognitive systems. These applications mimic the human brain functions, for example, recognize the speaker, sense the tone of the text. On this paper, we present the similarities of these with human cognitive functions. We establish a framework which gathers cognitive functions into nine intentional processes from the substructures of the human brain. The framework, underpins human cognitive functions, and categorizes cognitive computing functions into the functional hierarchy, through which we present the functional similarities between cognitive service and human cognitive functions to illustrate what kind of functions are cognitive in the computing. The results from the comparison of the functional hierarchy of cognitive functions are consistent with cognitive computing literature. Thus, the functional hierarchy allows us to find the type of cognition and reach the comparability between the applications.


2007 ◽  
pp. S33-S37
Author(s):  
M Kuchařová ◽  
S Ďoubal ◽  
P Klemera ◽  
P Rejchrt ◽  
M Navrátil

Mechanical behavior of biological structures under dynamic loading generally depends on elastic as well as viscous properties of biological materials. The significance of "viscous" parameters in real situations remains to be elucidated. Behavior of rheological models consisting of a combination of inertial body and two Voigt's bodies were described mathematically with respect to inverse problem solution, and behavior in impulse and harmonic loadings was analyzed. Samples of walls of porcine and human aorta thoracica in transverse direction and samples of human bone (caput femoris, substantia compacta) were measured. Deformation responses of human skin in vivo were also measured. Values of elastic moduli of porcine aorta walls were in the interval from 10(2)kPa to 10(3) kPa, values of viscous coefficients were in the interval from 10(2) Pa.s to 10(3) Pa.s. The value of shear stress moduli of human caput femoris, substantia compacta range from 52.7 to 161.1 MPa, and viscous coefficients were in the interval from 27.3 to 98.9 kPa.s. The role of viscous coefficients is significant for relatively high loading frequencies - in our materials above 8 Hz in aorta walls and 5 Hz for bones. In bones, the viscosity reduced maximum deformation corresponding to short rectangular stress.


Author(s):  
Panagiotis Antsaklis ◽  
Sebija Izetbegovic

ABSTRACT Defining normal and abnormal fetal neurological function in utero in order to better predict antenatally which fetuses are at risk for adverse neurological outcome has remained a great challenge in perinatal medicine. Fetal behavioral patterns have been considered as indicators of fetal brain development. It has been suggested that the assessment of fetal behavior in different periods of gestation may make possible the distinction between normal and abnormal brain development. Advances in ultrasound technology and particularly the introduction of real time four-dimensional (4D) ultrasonography, allowed direct observation of in utero life and offered a new insight for the assessment of fetal behavior. Fetal behavioral movements, the full range of facial expressions and mobility of fetal upper and lower extremities and fingers can be clearly visualized with 4D ultrasound. A new scoring system for the assessment of fetal neurobehavior based on prenatal assessment of the fetus with 4D sonography has been developed based on the same technique that neonatologists assess newborns during the first days of their postnatal life. This overview focuses on the study of fetal behavior and neurological assessment with 4D ultrasound. How to cite this article Antsaklis P, Kurjak A, Izetbegovic S. Functional Test for Fetal Brain: The Role of KANET Test. Donald School J Ultrasound Obstet Gynecol 2013;7(4):385-399.


2016 ◽  
Vol 116 (5) ◽  
pp. 2281-2297 ◽  
Author(s):  
Abigail C. Gambrill ◽  
Regina L. Faulkner ◽  
Hollis T. Cline

Communication between optic tecta/superior colliculi is thought to be required for sensorimotor behaviors by comparing inputs across the midline; however, the development of and the role of visual experience in the function and plasticity of intertectal connections are unclear. We combined neuronal labeling, in vivo time-lapse imaging, and electrophysiology to characterize the structural and functional development of intertectal axons and synapses in Xenopus tadpole optic tectum. We find that intertectal connections are established early during optic tectal circuit development. We determined the neurotransmitter identity of intertectal neurons using both rabies virus-mediated tracing combined with post hoc immunohistochemistry and electrophysiology. Excitatory and inhibitory intertectal neuronal somata are similarly distributed throughout the tectum. Excitatory and inhibitory intertectal axons are structurally similar and elaborate broadly in the contralateral tectum. We demonstrate that intertectal and retinotectal axons converge onto tectal neurons by recording postsynaptic currents after stimulating intertectal and retinotectal inputs. Cutting the intertectal commissure removes synaptic responses to contralateral tectal stimulation. In vivo time-lapse imaging demonstrated that visual experience drives plasticity in intertectal bouton size and dynamics. Finally, visual experience drives the maturation of excitatory intertectal inputs by increasing AMPA-to- N-methyl-d-aspartate (NMDA) ratios, comparable to experience-dependent maturation of retinotectal inputs, and coordinately increases intertectal GABA receptor-mediated currents. These data indicate that visual experience regulates plasticity of excitatory and inhibitory intertectal inputs, maintaining the balance of excitatory to inhibitory intertectal input. These studies place intertectal inputs as key players in tectal circuit development and suggest that they may play a role in sensory information processing critical to sensorimotor behaviors.


Sign in / Sign up

Export Citation Format

Share Document