scholarly journals Effect of Bioconditioning on Surface Characteristics of Periodontally-affected Roots of Diabetic Patients

2014 ◽  
Vol 5 (2) ◽  
pp. 81-86
Author(s):  
Hossam A Eid ◽  
Khalid M Abdelaziz ◽  
Refaat A Eid

ABSTRACT Objective Advanced glycosylated end products (AGEs) in type II diabetic patients are usually precipitated on the periodontallyaffected root surfaces. The presence of periodontopathic microbes, at the same time, may also add a negative impact on the prognosis of the regenerative periodontal surgery. This in vitro study aimed to evaluate the effect of chemical conditioning on surface characteristics of periodontally-affected roots of diabetic patients. Methods Three groups (n = 25) of freshly-extracted teeth were collected from the outpatient clinics, College of Dentistry, King Khalid University. In group 1, teeth were collected from healthy individuals for orthodontic purpose. Teeth of group 2 were collected from healthy patients with chronic periodontitis, while those of group 3 were collected from diabetic patients with chronic periodontitis. Roots of the collected teeth were examined using the scanning electron microscope (SEM) before and after mechanical surface planning and chemical treatment using normal saline, EDTA gel, Tetracycline HCL (TC) or citric acid (CA) each for 4 minutes (n = 5 from each group). Results Interpretation of SEM images revealed undesirable etching effect of the chemicals used on the surfaces of healthy roots. Although EDTA showed an effective cleanse of the smear debris, it seemed to have no power on surface cuticles existed on roots of diabetic individuals. Tetracycline HCl provided acceptable conditioning of periodontally-affected root surfaces. Citric acid showed a powerful removal of both smear debris and cuticle layers off the periodontally-affected roots of diabetic individuals. Conclusion Topical application of EDTA, TC or CA shows sensible effect on the periodontally affected root surfaces. However, each of these chemicals exhibits different conditioning power. Citric acid is a promising agent to biomodify the periodontally-affected root surfaces of diabetic patients. Clinical relevance Citric acid is an acceptable biomodifier for the periodontally-affected root surfaces. This approach may improve the prognosis of periodontal therapies especially in type II diabetic patients. How to cite this article Abdelaziz KM, Eid HA, Eid RA. Effect of Bioconditioning on Surface Characteristics of Periodontally- affected Roots of Diabetic Patients. World J Dent 2014;5(2):81-86.

2006 ◽  
Vol 7 (1) ◽  
pp. 35-43 ◽  
Author(s):  
R. Viswa Chandra ◽  
Ganesh Chandra Jagetia ◽  
K. Mahalinga Bhat

Abstract Objective The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Materials and Methods Commercially availableV79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 μg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). Results The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). Conclusion The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration. Citation Chandra RV, Jagetia GC, Bhat KM. The Attachment of V79 and Human Periodontal Ligament Fibroblasts on Periodontally Involved Root Surfaces Following Treatment with EDTA, Citric Acid, or Tetracycline HCL: An SEM in vitro Study. J Contemp Dent Pract 2006 February;(7)1:044-059.


2006 ◽  
Vol 7 (1) ◽  
pp. 44-59 ◽  
Author(s):  
R. Viswa Chandra ◽  
Ganesh Chandra Jagetia ◽  
K. Mahalinga Bhat

Abstract Objective The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Materials and Methods Commercially availableV79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 μg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). Results The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). Conclusion The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration. Citation Chandra RV, Jagetia GC, Bhat KM. The Attachment of V79 and Human Periodontal Ligament Fibroblasts on Periodontally Involved Root Surfaces Following Treatment with EDTA, Citric Acid, or Tetracycline HCL: An SEM in vitro Study. J Contemp Dent Pract 2006 February;(7)1:044-059.


2013 ◽  
Vol 7 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Reema Abu Khalaf ◽  
Ghassan Abu Sheikha ◽  
Mahmoud Al-Sha'er ◽  
Mutasem Taha

As incidence rate of type II diabetes mellitus continues to rise, there is a growing need to identify novel therapeutic agents with improved efficacy and reduced side effects. Dipeptidyl peptidase IV (DPP IV) is a multifunctional protein involved in many physiological processes. It deactivates the natural hypoglycemic incretin hormone effect. Inhibition of this enzyme increases endogenous incretin level, incretin activity and should restore glucose homeostasis in type II diabetic patients making it an attractive target for the development of new antidiabetic drugs. One of the interesting reported anti- DPP IV hits is Gemifloxacin which is used as a lead compound for the development of new DPP IV inhibitors. In the current work, design and synthesis of a series of N4-sulfonamido-succinamic, phthalamic, acrylic and benzoyl acetic acid derivatives was carried out. The synthesized compounds were evaluated for their in vitro anti-DPP IV activity. Some of them have shown reasonable bioactivity, where the most active one 17 was found to have an IC50 of 33.5 μM.


Author(s):  
Dhivya K ◽  
Yogarajan K ◽  
Shanmugarajan T S

ABSTRACTObjective: Periodontitis, a chronic inflammatory disease characterized by destruction of the periodontal ligament and alveolar bone is the sixthcomplication of diabetes mellitus. Periodontal treatment that reduces gingival inflammation aids in the control of hyperglycemia. Therefore, thepresent study was designed to determine the effect of treating chronic periodontitis with oral antibiotics azithromycin and metronidazole on the levelof serum glycated hemoglobin in type-II diabetic patients.Methods: This prospective observational study was carried out in the dental department of a tertiary care hospital for 9 months. Clinical andbiochemistry reports of 90 patients were collected in designed case report forms. All statistical analyses were performed using IBM Statistical Packagefor Social Sciences 17 and Graph Pad Prism 7.0.Results: Significant reduction in all the clinical and dental parameters was comparatively higher in patients who received azithromycin than inpatients who received metronidazole and scaling and root planning alone.Conclusion: Periodontal therapy with oral azithromycin can be employed as a supportive strategy for the management of diabetes mellitus.Henceforth, prevention and control of periodontal disease along with antibiotics must be considered an integral part of glycemic control. However,due to the lesser sample size in this study, further investigations are required to confirm the effect of periodontal therapy on systemic diseases.Keywords: Periodontitis, Azithromycin, Metronidazole, Glycemic control, Diabetes mellitus.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Donna M. Pacicca ◽  
Tammy Brown ◽  
Dara Watkins ◽  
Karen Kover ◽  
Yun Yan ◽  
...  

AbstractBone quality in diabetic patients is compromised, leading to weaker bones and increased fracture risk. However, the mechanism by which this occurs in diabetic bone remains to be fully elucidated. We hypothesized that elevated glucose and glucose variation would affect the function of osteocytes, essential regulators of bone homeostasis and quality. To first test this hypothesis, we used the IDG-SW3 osteocyte-like cell line to examine the effects of glucose levels on osteocyte function and viability in vitro. We confirmed our in vitro findings using the in vivo streptozotocin-induced (STZ) diabetic rat model and ex-vivo cultured osteocytes from these rats. IDG-SW3 cells cultured under high glucose conditions displayed significantly increased Sost mRNA(100-fold) and sclerostin protein, a negative regulator of bone formation(5000-fold), compared to cells in control media. mRNA expression of osteoblast markers such as Osx, Ocn and Col1a1 was unaffected by glucose. Factors associated with osteoclast activation were affected by glucose, with Rankl being upregulated by low glucose. Opg was also transiently upregulated by high glucose in mature IDG-SW3 cells. Induction of diabetes in Sprague-Dawley rats via a single dose of STZ (70 mg/kg) resulted in elevated maximum glucose and increased variability compared to control animals (670/796 vs. 102/142 mg/dL). This was accompanied by increased Sost/sclerostin expression in the osteocytes of these animals. These results show that glucose levels directly regulate osteocyte function through sclerostin expression and suggest a potential mechanism for the negative impact of diabetes on bone quality.


2016 ◽  
Vol 6 (1) ◽  
pp. 18-23
Author(s):  
Shweta Sabnis ◽  
GV Gayathri ◽  
Khyati K Chandra ◽  
Dhoom S Mehta

ABSTRACT Objectives Erstwhile studies have emphasized the importance of establishing a secure fibrin linkage between the tooth-soft tissue interface for formation of a new connective attachment. Thus, periodontal regeneration is reliant on the constant adhesion, maturation and absorption of fibrin clots to the root surfaces which are compromised periodontally. Improved fibrin clot formation and blood cell attachment is being aimed by modification of the root surfaces with different agents. Limited studies have evaluated the attachment of blood cell component on various laser treated root surfaces individually. Hence, the aim of this in vitro study was to evaluate and compare the adhesion of blood components on the root surfaces treated with citric acid, Nd:YAG, Er:YAG and CO2 lasers by scanning electron microscopy (SEM). Materials and methods The proposed study was conducted on 35 root specimens (5 × 5 × 1 mm) obtained from extracted periodontally compromised permanent teeth. The root specimens were randomly divided in five groups depending upon the type of treatment rendered. Group I: Untreated control group, group II: Citric acid (pH:1), group III: Nd:YAG laser (112.5 m J/pulse), group IV: CO2 laser (12.5 J/cm2), group V: Er:YAG laser (120 m J). Following the respective treatments, fresh human whole peripheral blood obtained from a healthy donor was applied to the external surface of all root specimens. The specimens were then analysed and scored for the adhesion of the blood components with photomicrographs of SEM. Results Statistically significant increase in the adhesion of blood components was seen in all the test groups compared to control group both citric acid and Er:YAG laser showed higher adhesion of blood cells to the root surface than the Nd:YAG laser and CO2 laser. Conclusion Er:YAG laser enhanced the adhesion of blood components over the treated root surfaces. Hence, it can be safely used as a root bio-modifier ensuring stable fibrin linkage to promote periodontal regeneration. How to cite this article Sabnis S, Gayathri GV, Chandra KK, Mehta DS. Comparison of Adhesion of Blood Components on Root Surfaces treated with Citric Acid, Nd:YAG, Er:YAG, and CO2 Lasers: An in vitro Analysis. Int J Laser Dent 2016;6(1):18-23.


2017 ◽  
Vol 3 (2) ◽  
pp. 55-58 ◽  
Author(s):  
NH Rekha ◽  
MS Bharath ◽  
SP Channakeshava

ABSTRACT Introduction Diabetes mellitus is a common metabolic disorder. Prevalence of diabetes is increasing globally and it is one of the major health problems of the 21st century. The disturbance in serum magnesium (SMg) has been reported among patients with type II diabetes mellitus. Hypomagnesemia has negative impact on glucose homeostasis and insulin sensitivity in patients with type II diabetes mellitus. Aim This study was undertaken to know the prevalence of hypomagnesemia in patients with type II diabetes mellitus and its relation with glycated hemoglobin (HbA1c). The study was conducted on 200 patients with type II diabetes and 100 healthy controls at RajaRajeswari Medical College & Hospital, Bengaluru. Results Out of 200 diabetic patients, 115 (57%) had hypomagnesemia. We observed mean SMg (1.7 mg) significantly low in diabetic patients compared with controls (2.1 mg). We also found HbA1c was high (9%) in hypomagnesemia patients. We found that diabetic hypomagnesemic patients had high mean fasting blood glucose (242.6 mg%) and postprandial blood sugar (313 mg%) than controls. How to cite this article Rekha NH, Bharath MS, Channakeshava SP. Study of Prevalence of Hypomagnesemia in Patients with Type II Diabetes Mellitus. J Med Sci 2017;3(2):55-58.


Sign in / Sign up

Export Citation Format

Share Document