scholarly journals A Preliminary Evaluation of a Reusable Digital Sterilization Indicator Prototype

2014 ◽  
Vol 15 (5) ◽  
pp. 626-635 ◽  
Author(s):  
R Puttaiah ◽  
J Griggs ◽  
M D'Onofrio

ABSTRACT Background Sterilization of critical and semicritical instruments used in patient care must undergo a terminal process of sterilization. Use of chemical and physical indicators are important in providing information on the sterilizer's performance during each cycle. Regular and periodic monitoring of sterilizers using biological indictors is necessary in periodically validating performance of sterilizers. Data loggers or independent digital parametric indicators are innovative devices that provide more information than various classes chemical indicators. In this study we evaluated a prototype of an independent digital parametric indicator's use in autoclaves. Aim The purpose of this study was to evaluate the performance of an independent digital indictor/data logger prototype (DS1922F) that could be used for multiple cycles within an autoclave. MG Materials and methods Three batches of the DS1922F (150 samples) were used in this study that was conducted in a series. The first batch was challenged with 300 sterilization cycles within an autoclave and the data loggers evaluated to study failures and the reason for failure, make corrections and improve the prototype design. After changes made based on studying the first batch, the second batch of the prototype (150 samples) were challenged once again with 300 sterilization cycles within an autoclave and failure studied again in further improvement of the prototype. The final batch (3rd batch) of the prototype (150 samples) was challenged again but with 600 cycles to see how long they would last. Kaplan-Meier survival analysis analyses of all three batches was conducted (α = 0.05) and failed samples qualitatively studied in understanding the variables involved in the failure of the prototype, and in improving quality. Results Each tested batch provided crucial information on device failure and helped in improvement of the prototype. Mean lifetime survival of the final batch (Batch 3) of prototype was 498 (480, 516) sterilization cycles in an autoclave. Conclusion In this study, the final batch of the DS1922F prototype data logger was found to be robust in withstanding the challenge of 600 autoclave cycles, with a mean lifetime of more than 450 cycles, multiple times more than prescribed number of cycles. Clinical significance Instrument reprocessing is among the important aspects of infection control. While stringent procedures are followed in instrument reprocessing within the clinic in assuring patient safety, regular use of sterilization process indicators and periodic biological validation of the sterilizer's performance is necessary. Chemical indicators for use in Autoclaves provide information on whether the particular cycle's parameters were achieved but do not provide at what specific point in time or temperature the failure occurred. Data loggers and associated reader software as the tested prototype in this evaluation (DS1922F), are designed to provide continuous information on time and temperature of the prescribed cycle. Data loggers provide immediate information on the process as opposed to Biological Indicators that take from days to a week in obtaining a confirmatory result. Further, many countries do not have the sterilization monitoring service infrastructure to meet the demands of the end users. In the absence of sterilization monitoring services, use of digital data loggers for each sterilization cycle is more pragmatic. How to cite this article Puttaiah R, Griggs J, D'Onofrio M. A Preliminary Evaluation of a Reusable Digital Sterilization Indicator Prototype. J Contemp Dent Pract 2014;15(5):626-635.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fernando do Pazo-Oubiña ◽  
Bartomeu Alorda-Ladaria ◽  
Ana Gomez-Lobon ◽  
Bàrbara Boyeras-Vallespir ◽  
María Margalida Santandreu-Estelrich ◽  
...  

AbstractMore thermolabile drugs are becoming available, and in most cases, these medications are dispensed to ambulatory patients. However, there is no regulation once medications are dispensed to patients and little is known with regard to what happens during transport and home storage. Previous studies suggest that these drugs are improperly stored. The present study was designed to determine the storage conditions of thermolabile drugs once they are dispensed to the patient in the Hospital Pharmacy Department. This is a prospective observational study to assess the temperature profile of 7 thermolabile drugs once they are dispensed to ambulatory patients at a tertiary care hospital. A data logger was added to the medication packaging. Temperature was considered inappropriate if one of the following circumstances were met: any temperature record less than or equal to 0 °C or over 25 °C; temperatures between 0–2 or 8–25 °C for a continuous period over 30 min. The time series of temperature measurements obtained from each data logger were analyzed as statistically independent variables. The data shown did not undergo any statistical treatment and must be considered directly related to thermal measurements. One hundred and fourteen patients were included and 107 patients were available for the analysis. On the whole, a mean of 50.6 days (SD 18.3) were measured and the mean temperature was 6.88 °C (SD 2.93). Three data loggers (2.8%) maintained all the measurements between 2 and 8 °C with less than 3 continuous data (< 30 min) out of this range but no data over 25 °C or below or equal to 0 °C. 28 (26.2%) data loggers had at least one measurement below zero, 1 data logger had a measurement greater than 25 °C and 75 (70.1%) were between 0 and 2 °C and/or between 8 and 25 °C for more than 30 min. In conclusion, once dispensed to patients, most thermolabile drugs are improperly stored. Future studies should focus on clinical consequences and possible solutions.


2015 ◽  
Vol 4 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Z. Liu ◽  
C. W. Higgins

Abstract. Submersible pressure transducers have been utilized for collecting water level data since the early 1960s. Together with a digital data logger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the wide use of pressure transducers for water level monitoring, little has been reported regarding their accuracy and performance under field conditions. The effects of temperature fluctuations on the output of vented pressure transducers were considered in this study. The pressure transducers were tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.


1996 ◽  
Vol 39 (2) ◽  
Author(s):  
D. Seidl ◽  
M. Hellweg ◽  
P. Okubo ◽  
H. Rademacher

The seismic wavefield near an active volcanic vent consists of superimposed signals in a wide range of frequency bands from sources inside and outside the volcano. To characterize the broadband wavefield near Puu Oo, we deployed a profile of three three-component broadband sensors in a 200 m long line about 1.5 km WSW of the active vent. During this period, Puu Oo maintained a constant, but very low level of activity. The digital data logger recorded the wavefield continuously in the frequency band between 0.01 and 40 Hz between June 25 and July 9, 1994. At the same time, local wind conditions along with air temperature and pressure were monitored by a portable digital weather station. On the basis of characteristic elements, such as waveform, spatial coherence between stations, particle motion and power spectra, the wavefield can be divided into three bands. The dominant signals in the frequency band between 0.01 and 0.1 Hz are not coherent among the stations. Their ground velocities correlate with the wind speed. The signals in the 0.1 to 0.5 Hz band are coherent across the profile and most probably represent a superposition of volcanic tremor and microseisms from the Pacific Ocean. Much of the energy above 0.5 Hz can be attributed to activity at the vent. Power spectra from recordings of the transverse components show complex peaks between 0.5 and 3 Hz which vary in amplitude due to site effects and distance. On the other hand, power spectra calculated from the radial components show a clearly periodic pattern of peaks at 1 Hz intervals for some time segments. A further remarkable feature of the power spectra is that they are highly stationary.


2020 ◽  
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in-situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the Mini Buoy, a low-cost bottom-mounted float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


2021 ◽  
Vol 25 (3) ◽  
pp. 1229-1244
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the “Mini Buoy”, a low-cost underwater float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current-velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence, can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


1994 ◽  
Vol 84 (5) ◽  
pp. 1665-1669
Author(s):  
Robert L. Nigbor

Abstract True six-degree-of-freedom (6DOF) measurement of free-field strong ground motion has been accomplished using a prototype 6DOF accelerograph system. This system consists of a traditional triaxial translational accelerometer, three new rotational velocity sensors, and a digital data logger. Rotational and translational ground motions at a single free-field location were measured successfully during the recent NPE event, a very large (1 kton) chemical explosion. Peak vertical acceleration at the near-field measurement site exceeded 1g for this event; the peak measured rotational velocity was 2.2°/sec. Earthquake strong-ground-motion measurements are currently in progress.


2020 ◽  
Vol 22 (1) ◽  
pp. 41-45
Author(s):  
Heather Parks

The Lascar Data Logger system includes three parts: the data loggers, EasyLog WiFi Software, and the EasyLog Cloud service. The intended use is to monitor and record the temperature, humidity, and dew point of the space surrounding the data logger to aid in achieving optimal environmental conditions of the collection. While it is a strong unit, there are competitors that might be a better fit for an institution.


2019 ◽  
Vol 23 (4) ◽  
pp. 2065-2076 ◽  
Author(s):  
Andrew D. Wickert ◽  
Chad T. Sandell ◽  
Bobby Schulz ◽  
Gene-Hua Crystal Ng

Abstract. Automated electronic data loggers revolutionized environmental monitoring by enabling reliable high-frequency measurements. However, the potential to monitor the complex environmental interactions involved in global change has not been fully realized due to the high cost and lack of modularity of commercially available data loggers. Responding to this need, we developed the ALog (Arduino logger) series of three open-source data loggers, based on the popular and easy-to-program Arduino microcontroller platform. ALog data loggers are low cost, lightweight, and low power; they function between −30 and +60 ∘C, can be powered by readily available alkaline batteries, and can store up to 32 GB of data locally. They are compatible with standard environmental sensors, and the ALog firmware library may be expanded to add additional sensor support. The ALog has measured parameters linked to weather, streamflow, and glacier melt during deployments of days to years at field sites in the USA, Canada, Argentina, and Ecuador. The result of this work is a robust and field-tested open-source data logger that is the direct descendant of dozens of individuals' contributions to the growing open-source electronics movement.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 410
Author(s):  
J Antony Veera Puthira Raja ◽  
J A. Bharath Raj ◽  
M Bharath ◽  
P C. Kishore Kumar ◽  
V Rajendran

The multichannel data logger is the one of the prominent component in any instrumentation system, the control process to give a high resolution to store accurate data from the sensing elements which varies depends on the different applications. In this point of view there are many developed data loggers are customized and general purpose data logger are available in the market with typical sampling frequency of 100 KHZ. Although the general purpose data logger with many of the time is suitable for laboratory level purpose when it comes to the defense, very special testing procedure based manufacturing process, larger channel sensing methods with a well-designed and adapted to specific application based customized data logger always been the under development. Proposed data logger is enabled with 8 channels IoT (Internet of things).              


Sign in / Sign up

Export Citation Format

Share Document