Lascar EL-WiFi-TH Data Logger

2020 ◽  
Vol 22 (1) ◽  
pp. 41-45
Author(s):  
Heather Parks

The Lascar Data Logger system includes three parts: the data loggers, EasyLog WiFi Software, and the EasyLog Cloud service. The intended use is to monitor and record the temperature, humidity, and dew point of the space surrounding the data logger to aid in achieving optimal environmental conditions of the collection. While it is a strong unit, there are competitors that might be a better fit for an institution.

Author(s):  
Helmy Fitriawan ◽  
Kholid Ali Dwi Cahyo ◽  
Sri Purwiyanti ◽  
Syaiful Alam

Oyster mushrooms (Pleurotus Ostreatus), such as white mushroom, chinese  mushroom, and warm mushroom, is one type of edible mushrooms. Oyster mushroom cultivation is usually done at the mushroom house (kumbung) which is mostly made of  bamboo.  Oyster mushrooms can grow optimally by controlling the temperature and humidity in the kumbung. Kumbung environment conditioning is usually done manually by spraying water on the planting medium every 8 hours.  But this is perceived as ineffective and requires high effort. For this reason, we need a technology that can monitor as well as control the environmental conditions inside the kumbung automatically and remotely. This paper describes the design of a system to monitor and control the temperature and humidity in the kumbung for oyster mushroom cultivation based on IoT (Internet of Things). This system is developed consisting of five parts, i.e sensor modules, microcontrollers, data loggers, actuators, and monitoring and control interfaces. The main result of this study is a remote monitoring and control of environmental conditions for oyster mushroom cultivation. The data of monitoring, in the form of temperature and humidity, are saved to the data logger and can be downloaded in the format (.csv). The system works functionally in accordance with the expected specifications, both in terms of sensor readings and actuator controlling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fernando do Pazo-Oubiña ◽  
Bartomeu Alorda-Ladaria ◽  
Ana Gomez-Lobon ◽  
Bàrbara Boyeras-Vallespir ◽  
María Margalida Santandreu-Estelrich ◽  
...  

AbstractMore thermolabile drugs are becoming available, and in most cases, these medications are dispensed to ambulatory patients. However, there is no regulation once medications are dispensed to patients and little is known with regard to what happens during transport and home storage. Previous studies suggest that these drugs are improperly stored. The present study was designed to determine the storage conditions of thermolabile drugs once they are dispensed to the patient in the Hospital Pharmacy Department. This is a prospective observational study to assess the temperature profile of 7 thermolabile drugs once they are dispensed to ambulatory patients at a tertiary care hospital. A data logger was added to the medication packaging. Temperature was considered inappropriate if one of the following circumstances were met: any temperature record less than or equal to 0 °C or over 25 °C; temperatures between 0–2 or 8–25 °C for a continuous period over 30 min. The time series of temperature measurements obtained from each data logger were analyzed as statistically independent variables. The data shown did not undergo any statistical treatment and must be considered directly related to thermal measurements. One hundred and fourteen patients were included and 107 patients were available for the analysis. On the whole, a mean of 50.6 days (SD 18.3) were measured and the mean temperature was 6.88 °C (SD 2.93). Three data loggers (2.8%) maintained all the measurements between 2 and 8 °C with less than 3 continuous data (< 30 min) out of this range but no data over 25 °C or below or equal to 0 °C. 28 (26.2%) data loggers had at least one measurement below zero, 1 data logger had a measurement greater than 25 °C and 75 (70.1%) were between 0 and 2 °C and/or between 8 and 25 °C for more than 30 min. In conclusion, once dispensed to patients, most thermolabile drugs are improperly stored. Future studies should focus on clinical consequences and possible solutions.


2020 ◽  
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in-situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the Mini Buoy, a low-cost bottom-mounted float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


2021 ◽  
Vol 25 (3) ◽  
pp. 1229-1244
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the “Mini Buoy”, a low-cost underwater float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current-velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence, can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 333-339 ◽  
Author(s):  
Carlos J. Fernandez ◽  
Kevin J. McInnes ◽  
J. Tom Cothren

Whole plant studies were conducted to examine the effects of glyphosate on components of carbon balance, transpiration, and biomass partitioning of wheat plants grown in Olton sandy clay loam soil and in a well-aerated fritted clay medium under controlled environmental conditions. Well-irrigated plants were transferred from a nursery room into a test chamber about 48 d after planting. Two to five days later, 12 to 42 ml of a glyphosate solution with a concentration of 480 mg ai L–1were sprayed until full coverage of the foliage. Environmental conditions in the chamber were air temperature 25 C, dew point 18 C, windspeed 1.1 m s–1, and PPFD 1500 mmol m–2s–1(at the top of the foliage) for 12 h daily. Glyphosate treatment resulted in destruction of the root system, as determined at the end of the tests, and at the start of tests using companion plants. Plants grown in soil lost 0.53 kg kg–1of the initial root mass, while this loss was 0.38 kg kg–1in plants grown in fritted clay. Glyphosate treatment rapidly inhibited daily rates of gross carbon uptake and transpiration of wheat plants grown in both media. Effects occurred more than twice as rapidly in plants grown in soil as in fritted day. Similarity in the patterns of inhibition of gross carbon uptake and transpiration suggests that glyphosate may also affect leaf stomata. After applying glyphosate, daily rates of carbon loss increased for 3 d in soil-grown plants but remained almost constant for 10 d in plants grown in fritted clay; thereafter, the rates of carbon loss declined. The early increase or the constancy of carbon loss observed after applying glyphosate was related to catabolic processes occurring in roots.


2019 ◽  
Vol 23 (4) ◽  
pp. 2065-2076 ◽  
Author(s):  
Andrew D. Wickert ◽  
Chad T. Sandell ◽  
Bobby Schulz ◽  
Gene-Hua Crystal Ng

Abstract. Automated electronic data loggers revolutionized environmental monitoring by enabling reliable high-frequency measurements. However, the potential to monitor the complex environmental interactions involved in global change has not been fully realized due to the high cost and lack of modularity of commercially available data loggers. Responding to this need, we developed the ALog (Arduino logger) series of three open-source data loggers, based on the popular and easy-to-program Arduino microcontroller platform. ALog data loggers are low cost, lightweight, and low power; they function between −30 and +60 ∘C, can be powered by readily available alkaline batteries, and can store up to 32 GB of data locally. They are compatible with standard environmental sensors, and the ALog firmware library may be expanded to add additional sensor support. The ALog has measured parameters linked to weather, streamflow, and glacier melt during deployments of days to years at field sites in the USA, Canada, Argentina, and Ecuador. The result of this work is a robust and field-tested open-source data logger that is the direct descendant of dozens of individuals' contributions to the growing open-source electronics movement.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 410
Author(s):  
J Antony Veera Puthira Raja ◽  
J A. Bharath Raj ◽  
M Bharath ◽  
P C. Kishore Kumar ◽  
V Rajendran

The multichannel data logger is the one of the prominent component in any instrumentation system, the control process to give a high resolution to store accurate data from the sensing elements which varies depends on the different applications. In this point of view there are many developed data loggers are customized and general purpose data logger are available in the market with typical sampling frequency of 100 KHZ. Although the general purpose data logger with many of the time is suitable for laboratory level purpose when it comes to the defense, very special testing procedure based manufacturing process, larger channel sensing methods with a well-designed and adapted to specific application based customized data logger always been the under development. Proposed data logger is enabled with 8 channels IoT (Internet of things).              


2017 ◽  
Vol 54 (1) ◽  
pp. 6-14
Author(s):  
Mitchell D. Richmond ◽  
Robert C. Pearce ◽  
Ben M. Goff ◽  
William A. Bailey

Significant variability in cured-leaf tobacco-specific nitrosamine (TSNA) content is commonly observed when sampling within dark air-curing barns. This variability may be due to inconsistency in the curing environment within different areas of the barn. A study was initiated in 2012, through support from a CORESTA Study Grant, to evaluate if cured-leaf TSNA content is related to microenvironmental conditions in the barn. Low-converter (TRsc) and high-converter (TRHC) selections of TR Madole dark tobacco were air cured in barns near Princeton and Lexington, KY. Temperature and relative humidity were measured with data loggers placed at 27 different locations within each barn for the duration of curing. There were no significant effects of individual data logger placement in either variety selection on hours above 24°C temperature, hours above 80% relative humidity, or TSNA; therefore, we investigated these data within the 3-dimensional aspects of tier, room, and bent within each barn. There were various effects of tier, room, and bent on temperature, relative humidity, and TSNA. Temperature data followed an understandable pattern across tiers in the barn within each year and location; however, relative humidity and TSNA were more difficult to characterize adequately. There was a significant relationship between hours above 24°C and TSNA, but not hours above 80% relative humidity. This study has shown that the effect of within-barn position on TSNA cannot be easily predicted.


Author(s):  
Y. Nithiyanandam ◽  
J. E. Nichol

Emissivity is a significant factor in determining land surface temperature (LST) retrieved from the thermal infrared (TIR) satellite images. A new simplified method (reflectance method) for emissivity correction was developed in this study while estimating emissivity values at a spatial resolution of 30 m from the radiance values of the SWIR image. This in turn enables mapping surface temperatures at a much finer spatial resolution (30 m). Temperatures so estimated are validated against surface temperatures measured in the ground by thermocouple data loggers recorded during satellite overpass time. In this study, surface emissivity values are derived directly from the AST_ L1B images. The reflectance method estimates temperature at higher spatial resolution of 30 m when compared to the 90 m spatial resolution of TES and reference channel methods. Temperature determined for the daytime image of 30<sup>th</sup> November 2007 using different emissivity techniques was compared with the temperatures measured on the field using thermocouple data loggers. It is observed that the estimates from the reflectance method are much closer to the field measurements than the TES and reference channel methods. The temperature difference values range from 0.2 to 2.3 &deg;C, 0.15 to 5.6 &deg;C, and 2.6 to 8.6 &deg;C for the reflectance method, normalization method and reference channel method, respectively. The new reflectance emissivity techniques i.e. reflectance method exhibits the least deviation from the field measured temperature values. While considering the accuracy of data logger (1 &deg;C) the reflectance method enables one to map surface temperature precisely than other two methods.


2009 ◽  
Vol 6 (2) ◽  
pp. 1261-1287 ◽  
Author(s):  
L. Boehme ◽  
P. Lovell ◽  
M. Biuw ◽  
F. Roquet ◽  
J. Nicholson ◽  
...  

Abstract. The increasing need for continuous monitoring of the world oceans has stimulated the development of a range of autonomous sampling platforms. One novel addition to these approaches is a small, relatively inexpensive data-relaying device that can be deployed on marine mammals to provide vertical oceanographic profiles throughout the upper 2000 m of the water column. When an animal dives, the CTD-Satellite Relay Data Logger (CTD-SRDL) records vertical profiles of temperature, conductivity and pressure. Data are compressed once the animal returns to the surface where it is located by, and relays data to, the Argos satellite system. The technical challenges met in the design of the CTD-SRDL are the maximising of energy efficiency by minimising size, whilst simultaneously maintaining the reliability of an instrument that cannot be recovered and is required to survive its lifetime attached to a marine mammal. The CTD-SRDLs record temperature and salinity with an accuracy of better than 0.005°C and 0.02 respectively. However, due to the limited availability of reference data for post-processing, data are often associated with slightly higher errors. The potential to collect large numbers of profiles cost-effectively makes data collection using CTD-SRDL technology particularly beneficial in regions where traditional oceanographic measurements are scarce. Depending on the CTD-SRDL configuration, it is possible to sample and transmit hydrographic profiles on a daily basis, providing valuable and often unique information for a real-time ocean observing system.


Sign in / Sign up

Export Citation Format

Share Document