scholarly journals Theoretical and Experimental Heat of Combustion Analysis of Paraffin-Based Fuels as Preburn Characterization for Hybrid Rocket

Author(s):  
Yash Pal ◽  
Anthony Raja ◽  
Kavitha Gopalakrishnan

The energy characteristics and theoretical performance of the hybrid rocket fuels are discussed in this paper. Aluminum (Al) and boron (B) metal additives were used to increase the energy density of the paraffin-based solid fuels. To predict the energy characteristics, the heat of combustion was evaluated by adiabatic bomb calorimetry. Theoretical performance parameters such as specific impulse (Isp), flame temperature, and characteristic velocity were obtained with NASA Chemical Equilibrium with Applications (CEA) code. Calorimetric test results revealed that paraffin/polyethylene/boron (P/PE/B)-based fuel formulations exhibited the highest heat of combustion among all the tested fuels. The heat of combustion value of the P/PE/B sample at 25 wt% B loading was found to be 9612 ±16 cal/g and 9293±17 cal/g for the P/PE/Al fuel formulation. The CEA results showed that the addition of Al to paraffin is noneffective in improving specific impulse performance. When B loading increased from 5 to 25 wt% in the P/PE/B, the Isp increased by 47 s compared to pure paraffin. A specific impulse increase implies the possible propellant mass saving. The reduction of the oxidizer and fuel masses may yield increased payload performance for given boundary conditions. The P/PE/B25 formulation has reported the highest value of characteristics velocity (C*) compared to other paraffin-based formulation.

Author(s):  
Hadi Rezaei ◽  
Mohammad Reza Soltani

The hybrid rocket motor is a kind of chemical propulsion system that has been recently given serious attention by various industries and research centers. The relative simplicity, safety and low cost of this motor, in comparison with other chemical propulsion motors, are the most important reasons for such interest. Moreover, throttle-ability and thrust variability on demand are additional advantages of this type of motor. In this paper, the result of an internal ballistic simulation of hybrid rocket motor in a zero-dimensional form is presented. Further to validate the code, an experimental setup was designed and manufactured. The simulation results are compared with the experimental data and good agreement is achieved. The effect of various parameters on the motor performance and on the combustion products is also investigated. It is found that increasing the oxidizer flow rate, increases the pressure and specific impulse of the motor; however, the slope of the specific impulse for the high flow rate case reduces. In addition, by increasing the combustion chamber pressure, the specific impulse is increased considerably. The initial diameter of the fuel port does not have significant effect on the pressure chamber and on the specific impulse. Addition of a percentage of an oxidizer like ammonium perchlorate to the fuel increases the specific impulse linearly.


Author(s):  
Izham Izzat Ismail ◽  
Norhuda Hidayah Nordin ◽  
Muhammad Hanafi Azami ◽  
Nur Azam Abdullah

A rocket's engine usually uses fuel and oxygen as propellants to increase the rocket's projection during launch. Nowadays, metallic ingredients are commonly used in the rocket’s operation to increase its performance. Metallic ingredients have a high energy density, flame temperature, and regression rate that are important factors in the propulsion process. There is a wide range of additives have been reported so far as catalysts for rocket propulsion. The studies show that the presence of metal additives improves the regression rate, specific impulse and combustion efficiency. Herein, the common energetic additives for rocket propulsion such as metal and light metals are reviewed. Besides the effect of these energetic particles on the regression behaviors of base (hybrid) fuel has been exclusively discussed. This paper also proposed a new alloy namely high entropy alloys (HEAs) as a new energetic additive that can potentially increase the performance of the rocket propellant system.


Author(s):  
Susane R. Gomes ◽  
Leopoldo J. Rocco

This research aims to provide a methodology for the project of labscale hybrid motors. This development began with the thermal analysis of the fuel grain using the Flynn, Wall and Ozawa method, generating simulation entry data to maximize the motor performance. The simulation was performed with the Chemical Equilibrium Specific Impulse Code. Based on the optimum oxidizer to fuel ratio, the literature was used to supply the mathematical background to calculate the motor geometrical parameters whose operating conditions were determined throughout the simulation. Finally, firing tests were conducted to verify the reliability of the project methodology. The firing tests were performed with three injectors: two swirling and one axial. The tests showed that the higher the operating pressure the more suitable is the project, meaning the methodology developed works best in hybrid rocket motors with high operating pressures. Additionally, it was shown that the swirling flow injectors produce higher efficiency.


2019 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Nachum E. Eisen ◽  
Alon Gany

This work analyzes and presents theoretical performance of a marine water-breathing ramjet propulsor. A conceptual scheme of the motor is shown, the equation of thrust is presented, and the dependence on cruise velocity and depth are discussed. Different propellant compositions, representing a wide variety of formulations suitable for propelling a water-breathing ramjet, are investigated. The theoretical results reveal that the specific impulse of a water-breathing ramjet can increase by as much as 30% compared to a standard rocket, when using a conventional hydroxyl terminated polybutadiene (HTPB)-ammonium perchlorate (AP) propellant, which does not react chemically with the water. When employing a water-reactive propellant containing metal particles such as magnesium or aluminum, the specific impulse may be more than doubled. The thrust coefficient of the propulsor was computed at different cruise velocities and depths and was found to be greater than the predictable drag even at significant depth.


1998 ◽  
Author(s):  
Christopher St. Clair ◽  
Daniel Gramer ◽  
Eric Rice ◽  
William Knuth

Author(s):  
Waseem Nazeer ◽  
Kenneth Smith ◽  
Patrick Sheppard ◽  
Robert Cheng ◽  
David Littlejohn

The continued development of a low swirl injector for ultra-low NOx gas turbine applications is described. An injector prototype for natural gas operation has been designed, fabricated and tested. The target application is an annular gas turbine combustion system requiring twelve injectors. High pressure rig test results for a single injector prototype are presented. On natural gas, ultra-low NOx emissions were achieved along with low CO. A turndown of approximately 100°F in flame temperature was possible before CO emissions increased significantly. Subsequently, a set of injectors was evaluated at atmospheric pressure using a production annular combustor. Rig testing again demonstrated the ultra-low NOx capability of the injectors on natural gas. An engine test of the injectors will be required to establish the transient performance of the combustion system and to assess any combustor pressure oscillation issues.


Author(s):  
Greg Zilliac ◽  
Benjamin Waxman ◽  
Eric Doran ◽  
Jonathan Dyer ◽  
Arif Karabeyoglu ◽  
...  

Author(s):  
Alexandr A. Belokon ◽  
Konstantin M. Khritov ◽  
Lev A. Klyachko ◽  
Sergey A. Tschepin ◽  
Vladimir M. Zakharov ◽  
...  

Diffusion flame combustor test results are presented for methane firing in steam/air mixtures containing up to 20% steam. The tests were conducted at atmospheric pressure with combustor inlet temperatures up to 700K. Steam and air were fully premixed before combustion. Combustion efficiency and NOX levels were measured. The well-known Θ loading parameter was modified by replacing the combustor inlet temperature with the flame temperature. The flame temperature was defined as the stoichiometric temperature of the steam/air mixture. The combustion efficiency obtained with and without steam correlated nicely with this modified loading parameter. Calculated NOX levels agreed well with the measurements, where NOX was predicted using the flamelet technique. This approach makes it possible to predict combustor efficiencies with steam by using combustor performance data taken without steam. Preliminary design analyses of gas turbine cycles with significant steam addition can now easily include the impact of the steam on combustor performance.


2011 ◽  
Vol 399-401 ◽  
pp. 279-283
Author(s):  
Wei Qiang Pang ◽  
Hui Xiang Xu ◽  
Yang Li ◽  
Xiao Bing Shi

The theoretical performances of NEPE (nitrate ester plasticized polyether) propellant with and without ADN were calculated with minimum free energy method. The burning characteristics and the thermal decomposition of propellants were determined by nickel chromium wire method and TG- DTG, respectively. The SEM of NEPE propellants and the mechanical sensitivity were also detected. The results show that the specific impulse and the adiabatic flame temperature are increase with an increase in the content of ADN oxidizer. The burning rate and pressure exponent of propellant with a change of pat content of ADN can be boosted higher than those of the AP formulations.


Sign in / Sign up

Export Citation Format

Share Document