scholarly journals Comparison of CSV-1000 and Metrovision contrast sensitivity tests in normal eyes

2021 ◽  
Vol 2 (2) ◽  
pp. 63-70
Author(s):  
Abolfazl Tahkor ◽  
Javad Heravian Shandiz ◽  
Abbas Azimi Khorasani ◽  
Alireza Ansari Moghadam

Background: Measuring contrast sensitivity (CS) allows a better understanding of the visual performance of the human eye. This study aimed to examine the correlation and agreement between the results of two sinewave grating-based CS measurement methods, Metrovision and CSV-1000, in normal eyes. Methods: This cross-sectional, comparative study was performed between December 2018 and April 2019, at an optometry clinic. Subjects underwent comprehensive ocular examinations, which included pupil reflexes, subjective refraction, external eye examinations, smooth pursuit eye movement assessment, the cover–uncover test, and detailed slit-lamp examination of the anterior and posterior segments. Metrovision and CSV-1000 were employed to assess CS under photopic conditions. The correlation and agreement of the results of the two tests were evaluated. Results: CS was measured for 104 normal eyes for 3, 6, 12, and 18 cycles per degree (cpd) spatial frequencies (participants’ mean age ± standard deviation: 37.3 ± 26.4 years). The CSV-1000 measurements were significantly higher for the 3 and 6 cpd spatial frequencies (both P = 0.01); however, at higher spatial frequencies, CS scores were similar. The highest and lowest differences between the two tests were recorded for the 3 cpd spatial frequency and 18 cpd spatial frequency, respectively. Except for the 3 cpd spatial frequency, in both eyes, the findings correlated significantly between the CSV-1000 and Metrovision (P < 0.05). The narrowest and widest limits of agreement between the two tests were found for the 12 and 3 cpd spatial frequencies, respectively. Conclusions: The CSV-1000 method estimated CS higher than the Metrovision method, mostly at lower spatial frequencies. Furthermore, the agreement between the two methods was greater at higher spatial frequencies than at lower frequencies. This should be kept in mind when using the two methods interchangeably in visual screening.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhen Ren ◽  
Jiawei Zhou ◽  
Zhimo Yao ◽  
Zhengchun Wang ◽  
Nini Yuan ◽  
...  

Abstract It is well known that, in humans, contrast sensitivity training at high spatial frequency (SF) not only leads to contrast sensitivity improvement, but also results in an improvement in visual acuity as assessed with gratings (direct effect) or letters (transfer effect). However, the underlying neural mechanisms of this high spatial frequency training improvement remain to be elucidated. In the present study, we examined four properties of neurons in primary visual cortex (area 17) of adult cats that exhibited significantly improved acuity after contrast sensitivity training with a high spatial frequency grating and those of untrained control cats. We found no difference in neuronal contrast sensitivity or tuning width (Width) between the trained and untrained cats. However, the trained cats showed a displacement of the cells’ optimal spatial frequency (OSF) to higher spatial frequencies as well as a larger neuronal signal-to-noise ratio (SNR). Furthermore, both the neuronal differences in OSF and SNR were significantly correlated with the improvement of acuity measured behaviorally. These results suggest that striate neurons might mediate the perceptual learning-induced improvement for high spatial frequency stimuli by an alteration in their spatial frequency representation and by an increased SNR.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 200-200
Author(s):  
M I Kankaanpää ◽  
J Rovamo ◽  
H T Kukkonen ◽  
J Hallikainen

Contrast sensitivity functions for achromatic and chromatic gratings tend to be band-pass and low-pass in shape, respectively. Our aim was to test whether spatial integration contributes to the shape difference found at low spatial frequencies. We measured binocular chromatic contrast sensitivity as a function of grating area for objectively equiluminous red - green and blue - yellow chromatic gratings. Chromatic contrast refers to the Michelson contrast of either of the two chromatic component gratings presented in counterphase against the combined background. Grating area ( A) varied from 1 to 256 square cycles ( Af2) at spatial frequencies ( f) of 0.125 – 4.0 cycles deg−1. We used only horizontal gratings at low and medium spatial frequencies to minimise the transverse and longitudinal chromatic aberrations due to ocular optics. At all spatial frequencies studied, chromatic contrast sensitivity increased with grating area. Ac was found to be constant at low spatial frequencies (0.125 – 0.5 cycles deg−1) but decreased in inverse proportion to increasing spatial frequency at 1 – 4 cycles deg−1. Thus, spatial integration depends similarly on spatial frequency for achromatic (Luntinen et al, 1995 Vision Research35 2339 – 2346) and chromatic gratings, and differences in spatial integration do not contribute to the shape difference of the respective contrast sensitivity functions.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 214-214 ◽  
Author(s):  
S A Koskin ◽  
V F Danilichev ◽  
Y E Shelepin

We studied the contrast sensitivity functions (CSFs) in patients with different eye and brain diseases using a computerised sinusoidal grating test with a wide range of frequencies (0.4 – 19.0 cycles deg−1), the Pelli - Robson chart and a new chart with frequency-filtered Snellen optotypes. The patients had different CSF curves with a decrease of contrast sensitivity in the low, middle, or high frequencies depending on their main disease (refraction anomalies, cataract, glaucoma, neuritis of optic nerve, brain tumours, etc). Analysis showed that optotypes in the Pelli - Robson chart have a wide-range spatial-frequency spectrum, and optotype recognition is determined not only by low spatial frequencies. We find that the recognition of standard Sloan's optotypes is determined mostly by sensitivity in the range of 9.4 – 14.0 cycles deg−1. At the same time we measured contrast sensitivity using the new filtered Snellen optotypes. Our calculations support our earlier suggestions that the new filtered optotypes have a narrow-band spatial-frequency spectrum, thus enabling selective measurement of contrast sensitivity in each narrow frequency band.


2005 ◽  
Vol 8 (2) ◽  
pp. 113-118
Author(s):  
Miguel A. García-Pérez

Visual functioning at various retinal illuminance levels is usually measured either by determining grating acuity as a function of light level or by determining how sensitivity to sine-wave gratings changes with retinal illuminance. The former line of research has shown that grating acuity follows a two-branch relationship with retinal illuminance, with the point of discontinuity occurring at the transition from scotopic to photopic vision. Results of the latter line of research have summarily been described as a transition from the DeVries-Rose law to Weber's law, according to which log sensitivity increases linearly with log illuminance with a slope of 0.5 over a range of low illuminances (the DeVries-Rose range) and then levels off and does not increase with further increases of illuminance (the Weber range). This paper aims at determining the compatibility of the results of these two lines of research. We consider empirical constraints from data bearing on the shape of the surface describing contrast sensitivity to sine-wave gratings as a function of spatial frequency and illuminance simultaneously, in order to determine whether they are consistent with a summary description in terms of DeVries-Rose and Weber's laws. Our analysis indicates that, with sine-wave gratings, the DeVries-Rose law can only hold empirically at low spatial frequencies.


Perception ◽  
1996 ◽  
Vol 25 (5) ◽  
pp. 523-530 ◽  
Author(s):  
Jonathan S Pointer

Analysis of recently published human contrast-sensitivity data obtained along the cardinal and major oblique visual-field meridians of a single subject has demonstrated a consistently greater sensitivity at a given eccentricity to horizontally oriented as compared with obliquely oriented gratings. This difference was evident not only at foveal but also at several eccentric loci over a range of low to medium spatial frequencies. This observation is to be distinguished in extrafoveal fixation from the well-documented oblique effect, which describes the variation in sensitivity with orientation at a single visual-field locus. With periodic stimuli which were well localised in space and frequency, and had comparable spatial-summation properties, a spatial-frequency dependency of what could be termed the global oblique effect could be demonstrated along isoeccentric contours centred on the fovea (eccentricity 0 deg) out to an eccentricity of at least 40 deg.


2007 ◽  
Vol 24 (3) ◽  
pp. 319-331 ◽  
Author(s):  
D.P.M. NORTHMORE ◽  
D.-J. OH ◽  
M.A. CELENZA

Spatial vision was studied in the bluegill sunfish, Lepomis macrochirus (9.5–14 cm standard length) to assess the limitations imposed by the optics of the eye, the retinal receptor spacing and the retinotectal projection during regeneration. Examination of images formed by the dioptric elements of the eye showed that spatial frequencies up to 29 c/° could be imaged on the retina. Cone spacing was measured in the retina of fresh, intact eyes. The spacing of rows of double cones predicted 3.4 c/° as the cutoff spatial frequency; the spacing between rows of single and double cones predicted 6.7 c/°. Contrast sensitivity functions were obtained psychophysically in normals and fish with one regenerating optic nerve. Fish were trained to orient to gratings (mean luminance = 25 cd/m2) presented to either eye. In normals, contrast sensitivity functions were similar in shape and bandwidth to those of other species, peaking at 0.4 c/° with a minimum contrast threshold of 0.03 and a cutoff at about 5 c/°, which was within the range predicted by cone spacing. Given that the optical cutoff frequency exceeds that predicted by cone spacing, it is possible that gratings could be detected by aliasing with the bluegill's regular cone mosaic. However, tests with high contrast gratings up to 15 c/° found no evidence of such detection. After crushing one optic nerve in three trained sunfish, recovery of visual avoidance, dorsal light reflex and orienting to gratings, were monitored over 315 days. At 64–69 days postcrush, responses to gratings reappeared, and within 2–5 days contrast sensitivity at low (0.15 c/°) and medium (1.0 c/°) spatial frequencies had returned to normal. At a high spatial frequency (2.93 c/°) recovery was much slower, and complete only in one fish.


2018 ◽  
Vol 119 (6) ◽  
pp. 2059-2067 ◽  
Author(s):  
Chris Scholes ◽  
Paul V. McGraw ◽  
Neil W. Roach

During periods of steady fixation, we make small-amplitude ocular movements, termed microsaccades, at a rate of 1–2 every second. Early studies provided evidence that visual sensitivity is reduced during microsaccades—akin to the well-established suppression associated with larger saccades. However, the results of more recent work suggest that microsaccades may alter retinal input in a manner that enhances visual sensitivity to some stimuli. Here we parametrically varied the spatial frequency of a stimulus during a detection task and tracked contrast sensitivity as a function of time relative to microsaccades. Our data reveal two distinct modulations of sensitivity: suppression during the eye movement itself and facilitation after the eye has stopped moving. The magnitude of suppression and facilitation of visual sensitivity is related to the spatial content of the stimulus: suppression is greatest for low spatial frequencies, while sensitivity is enhanced most for stimuli of 1–2 cycles/°, spatial frequencies at which we are already most sensitive in the absence of eye movements. We present a model in which the tuning of suppression and facilitation is explained by delayed lateral inhibition between spatial frequency channels. Our data show that eye movements actively modulate visual sensitivity even during fixation: the detectability of images at different spatial scales can be increased or decreased depending on when the image occurs relative to a microsaccade. NEW & NOTEWORTHY Given the frequency with which we make microsaccades during periods of fixation, it is vital that we understand how they affect visual processing. We demonstrate two selective modulations of contrast sensitivity that are time-locked to the occurrence of a microsaccade: suppression of low spatial frequencies during each eye movement and enhancement of higher spatial frequencies after the eye has stopped moving. These complementary changes may arise naturally because of sluggish gain control between spatial channels.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gökhan Pekel ◽  
Neşe Alagöz ◽  
Evre Pekel ◽  
Cengiz Alagöz ◽  
Ömer Faruk Yılmaz

Purpose. Our aim was to compare contrast sensitivity values of the dominant and nondominant eyes of healthy middle-aged subjects. Material and Methods. Ninety eyes of 45 healthy middle-aged subjects (30 males and 15 females) were included in this study. Patients were aged between 40 and 60 years, having uncorrected visual acuity (UCVA) of 20/25 or better (Snellen chart). Ocular dominance was determined by hole-in-the-card test. Functional acuity contrast testing (F.A.C.T.) was measured using the Optec 6500 vision testing system (Stereo Optical Co. Inc., Chicago, IL, USA) under both photopic and mesopic conditions. Results. At all spatial frequencies (1.5, 3, 6, 12, and 18 cpd), under mesopic conditions, the contrast sensitivity values of the dominant eyes were slightly greater than those of the nondominant eyes; but only 18 cpd spatial frequency measurements’ difference was statistically significant (P=0.035). Under photopic conditions, the contrast sensitivity values of the dominant eyes and non-dominant eyes were similar at all spatial frequencies (P>0.05). Conclusions. The photopic and mesopic contrast sensitivity values of dominant and nondominant eyes of healthy middle-aged people were similar at all spatial frequencies, except at mesopic 18 cpd spatial frequency.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Li-Quan Zhao ◽  
Huang Zhu

This control-matched comparative study evaluated changes in contrast sensitivity after Zyoptix tissue-saving (TS) LASIK and Planoscan standard LASIK (Technolas 217z, Bausch & Lomb) for myopia 6 months postoperatively. 102 TS LASIK-treated eyes were matched with 102 standard LASIK-treated eyes (divided into low, moderate, and high groups). There were no significant differences in refraction outcomes between the groups postoperatively. In high group, a significant reduction in contrast sensitivity after TS LASIK was found at high spatial frequencies (P<.05) under photopic conditions and at middle to high spatial frequencies (P<.05) under mesopic conditions. And significant reduction was also found in standard LASIK at high spatial frequency (P<.05) under mesopic conditions. The reduction was significantly lower in TS LASIK than that in standard LASIK at high spatial frequencies (P<.05) under mesopic conditions. TS LASIK was prone to reduce mesopic contrast sensitivity of high myopia at high spatial frequencies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Meiping Xu ◽  
Yiya Chen ◽  
Yiyi Peng ◽  
Zhifen He ◽  
Jun Jiang ◽  
...  

Purpose: To determine binocular summation of surgically treated intermittent exotropia (IXT) patients by measuring the contrast threshold.Methods: We recruited 38 surgically treated IXT patients aged 8–24 years and 20 age-matched healthy controls. All participants had normal or corrected-to-normal visual acuity (Snellen ≥ 20/20) in both eyes. The IXT patients had undergone the surgery at least a year prior to the study. Twenty-one of them obtained good alignment and 17 experienced a recurrence of exotropia. We measured the observers' monocular and binocular contrast sensitivities (CS) at six spatial frequencies (1.5, 3, 6, 12, 18, 24 cycles/degree) as an index of visual information processing at the threshold level. Binocular summation was evaluated against a baseline model of simple probability summation based on the CS at each spatial frequency and the area under the log contrast sensitivity function (AULCSF).Results: The exo-deviation of IXTs with good alignment was −6.38 ± 3.61 prism diopters (pd) at 33 cm and −5.14 ± 4.07 pd at 5 m. For the patients with recurrence, it was −23.47 ± 5.53 pd and −21.12 ± 4.28 pd, respectively. There was no significant difference in the binocular summation ratio (BSR) between the surgically treated IXT patients, including those with good alignment and recurrence, and normal controls at each spatial frequency [F(2,55) = 0.416, P = 0.662] and AULCSF [F(2,55) = 0.469, P = 0.628]. In addition, the BSR was not associated with stereopsis (r = −0.151, P = 0.365).Conclusion: Our findings of normal contrast sensitivity binocular summation ratio in IXT after surgical treatment suggest that the ability of the visual cortex in processing binocular information is intact at the contrast threshold level.


Sign in / Sign up

Export Citation Format

Share Document