scholarly journals PURIFICATION OF POLLUTED WATER AT THE MUBAREK GAS PROCESSING PLANT LTD USING BY ION EXCHANGERS

2020 ◽  
Vol 2020 (3) ◽  
pp. 32-37
Author(s):  
Z Nazirov ◽  
◽  
J Ibragimov ◽  
S Turabdzhanov ◽  
M Khashimova ◽  
...  

The full chemical composition of the circulating and make-up water of the Mubarek Gas Processing Plant JSC “Uzbekneftigaz” has been investigated. Raw water sources are the Kui-Mazorsk reservoir and groundwater (artesian water).The amount of released impurities after their softening by passing through the layers of the KU-2-8 cation exchanger is determined. This method is simple, effective and energy-saving in water treatment, LLC "Mubarek" GPP.

2001 ◽  
Vol 43 (12) ◽  
pp. 225-228 ◽  
Author(s):  
K. Lahti ◽  
J. Rapala ◽  
A-L. Kivimäki ◽  
J. Kukkonen ◽  
M. Niemelä ◽  
...  

Problems caused by cyanobacteria are common around the world and also in raw water sources of drinking water treatment plants. Strains belonging to genera Microcystis, Anabaena and Planktothrix produce potent hepatotoxins, the microcystins. Laboratory and pilot scale studies have shown that microcystins dissolved in water may pass the conventional surface water treatment processes. In 1998 the World Health Organization proposed a guide value of 1 μg/L for microcystin-LR (MC-LR) in drinking water. The purpose of this research was to study the occurrence of microcystins in raw water sources of surface waterworks and in bank filtration plants and to evaluate the removal of microcystins in operating waterworks. Four bank filtration plants and nine surface waterworks using different processes for water treatment were monitored. Phytoplankton was identified and quantified, and microcystins analysed with sensitive immunoassay. Microcystin occurrence in selected water samples was verified with HPLC and a protein phosphatase inhibition method. Microcystins were detected sporadically in raw water sources of most of the waterworks. In two raw water supplies toxins were detected for several months. The highest microcystin concentrations in incoming raw water were approximately 10 μg/L MC-LR equivalents. In treated drinking water microcystins were detected occasionally but the concentrations were always below the guide value proposed by WHO.


2011 ◽  
Vol 255-260 ◽  
pp. 2686-2690
Author(s):  
Gui Qing Gao ◽  
Hai Yan Ju ◽  
Du Wang Li

The pilot-scale experiment of air flotation was carried out for reservoir water treatment of Shenzhen in order to provide reference for waterplant. The results show the turbidity of raw water is higher or lower than 15NTU, the optimum dosage of poly aluminum chloride (PAC) is 1.65mg/L and 1.25mg/L respectively. When the turbidity of raw water is between 3NTU and 32NTU, the amount of algae is less than 1.08×107unit/L, the removal rate of air flotation for turbidity and algae is 89.3% and 92.7% respectively; besides, the average removal rate of air flotation on CODMn is 32.6%, 21.2% of TOC is removed at least. Air flotation has preferable treatment effect on high–algae and low-turbidity water, adapts to treat micro-polluted water in South China.


2013 ◽  
Vol 13 (1) ◽  
pp. 20-28
Author(s):  
S. P. Dlamini ◽  
J. Haarhoff ◽  
B. B. Mamba ◽  
S. Van Staden

Drinking water treatment plants in South Africa rely almost entirely on surface water sources, which are often compromised due to high return flows and indirect reuse. The typical treatment plants focus on the removal of physical and microbial contaminants which include turbidity, colour, chemical compounds and microorganisms. A relatively new concern to this list is natural organic matter (NOM) which has become a major concern in potable water treatment due to its recent regulation. In this study, eight different raw water samples from the various water types found in the country were seasonally collected and treated for the removal UV absorbance at a wavelength of 254 nm (UV254) using enhanced coagulation (EC). The efficacy of EC, which can be employed as a practical technology in the removal of both turbidity and NOM, was evaluated in remaining UV254 from these raw water sources. Jar tests were conducted, with ferric chloride used as the coagulant (due to its extensive use as a coagulant in the water treatment industry in South Africa) and specific pH values (initial water pH, 7.0, 6.0, 5.5, 5.0 and 4.5) were chosen as target values guiding the six different coagulant dosages for the jar tests. The pH of the low-alkalinity (<60 mg/L CaCO3) raw waters were adjusted and raised by the addition of sodium carbonate. The response parameters of the tests were turbidity (NTU), pH and UV254. Algorithms for finding the optimum coagulant dosage for UV254 removal were developed and consistently applied to all the results. Results showed large variations in the nature of NOM across the country from specific ultraviolet absorbance values. From the UV254 values, the concentrations of NOM also varied greatly geographically than temporally. The general trend observed in the EC results suggested that the pH should always be dropped to between 4.5 and 7.0 to lower the amounts of UV254 and turbidity to reasonable levels.


Author(s):  
Valeria Mirela Brezoczki ◽  
Juhasz Jozsef ◽  

This paper presents the analysis of quality indicators for six surface water sources and two subterranean water sources at Baia Sprie, which are meant for domestic use. The period during which water quality was monitored covers three months (January, March and May 2018); during this period the control analyses of water quality were carried out in the laboratory of the Baia Mare Water treatment plant. The analysis of the results obtained highlighted a series of bacteriological indicators/parameters that were exceeded, as well as turbidity and hardness in the raw water from the catchments. The existence of colonies developed at 37°C and 22°C in the water requires a chemical treatment of this raw water with the aim of disinfecting it. The paper contains certain data regarding the need for water and the system for distributing drinkable water to consumers, the description of catchments and the subterranean water treatment technology required for meeting the sanitary conditions for rendering water drinkable, as well as the analysis of physical, chemical and bacteriological indicators obtained, compared to the legislation in force. The parameters of the thus rendered drinkable water match the values accepted through the legislation in force, the water being distributed to consumers through the Drinkable water distribution system in Baia Sprie.


1981 ◽  
Vol 27 (4) ◽  
pp. 417-420 ◽  
Author(s):  
Pierre Payment

Viruses were isolated from every sample of raw (100 L) and treated (1000 L) water collected at a water treatment plant drawing sewage-contaminated river water. Few plaque-forming isolates were found but cytopathogenic viruses were isolated as frequently in drinking water as in raw water. In drinking water some samples contained more than 1 cytopathogenic unit per litre, but most contained 1–10/100 L. These viruses had not been inactivated or removed by prechlorination, flocculation, filtration, ozonation, and postchlorination. There were no coliforms present and a residual chlorine level had been maintained. Poliovirus type 1 was a frequent isolate but many isolates were nonpoliovirus. The presence of these viruses in drinking water raises questions about the efficacy of some water treatment processes to remove viruses from polluted water.


2020 ◽  
Vol 67 (1) ◽  
pp. 142-147
Author(s):  
Alina A. Aleksandrova ◽  
Maksim S. Zhuzhin ◽  
Yuliya M. Dulepova

Energy saving today is an integral part of the development strategy of agricultural organizations. Considerable attention is paid to the modernization and automation of technological processes in agricultural enterprises, which can improve the quality of work and reduce the cost of production. The direction of modernization is to reduce the consumption of electric energy by improving the water treatment system in livestock complexes. (Research purpose) The research purpose is to determine the potential of solar energy used in the Nizhny Novgorod region and to determine the possibility of its use for water heating in livestock complexes and to consider the cost-effectiveness of using a device to heat water through solar energy. (Materials and methods) Authors used an improved algorithm of Pixer and Laszlo, applied in the NASA project «Surface meteorology and Energy», which allows to calculate the optimal angle of inclination of the device for heating water. (Results and discussion) Designed a mock-up of a livestock complex with a solar water heater installed on the roof, protected by patent for invention No. 2672656. A mathematical model was designed experimentally to predict the results of the plant operation in non-described modes. (Conclusions) The article reveales the optimal capacity of the circulation pump. Authors have created a mathematical model of the device that allows to predict the water heating in a certain period of time. The article presents the calculations on the energy and economic efficiency of using a solar water heater. An electric energy saving of about 30 percent, in the economic equivalent of 35 percent.


2018 ◽  
Vol 20 ◽  
pp. 16-33 ◽  
Author(s):  
J. Saraiva de Souza ◽  
S. José dos Santos Filho ◽  
Severino Rodrigues de Farias Neto ◽  
A.G. Barbosa de Lima ◽  
H.A. Luma Fernandes Magalhães

Innovative technologies are needed to attend the increasingly strict requirements for produced water treatment, since most of the separation processes are limited to particles larger than 10 μm. Separation processes using ceramic membranes are attracting great interest from academic and industrial community. Nevertheless, few studies, especially numerical, regarding the inorganic membrane’s application for the polluted water separation have been reported. In the present work, therefore, a study of fluid-flow dynamics for a laminar regime in porous tubes (tubular porous ceramic membrane) has been performed. The mass, momentum and mass transport conservation equations were solved with the aid of a structured mesh using ANSYS CFX commercial package. The velocity of local permeation was determined using the resistance in series model. The specific resistance of the polarized layer was obtained by Carman-Kozeny equation. The numerical results were evaluated and compared with the results available in the literature, where by a good agreement with each other was found. The numerical results, obtained by the proposed shell and tubular membrane separation module, indicate that there is facilitation of mass transfer and hence a reduction in the thickness of the polarized boundary layer occurs.


2021 ◽  
Vol 30 (5) ◽  
pp. 58-65
Author(s):  
A. Yu. Shebeko ◽  
Yu. N. Shebeko ◽  
A. V. Zuban

Introduction. GOST R 12.3.047-2012 standard offers a methodology for determination of required fire resistance limits of engineering structures. This methodology is based on a comparison of values of the fire resistance limit and the equivalent fire duration. However, in practice incidents occur when, in absence of regulatory fire resistance requirements, a facility owner, who has relaxed the fire resistance requirements prescribed by GOST R 12.3.047–2012, is ready to accept its potential loss in fire for economic reasons. In this case, one can apply the probability of safe evacuation and rescue to compare distributions of fire resistance limits, on the one hand, and evacuation and rescue time, on the other hand.A methodology for the identification of required fire resistance limits. The probabilistic method for the identification of required fire resistance limits, published in work [1], was tested in this study. This method differs from the one specified in GOST R 12.3.047-2012. The method is based on a comparison of distributions of such random values, as the estimated time of evacuation or rescue in case of fire at a production facility and fire resistance limits for engineering structures.Calculations of required fire resistance limits. This article presents a case of application of the proposed method to the rescue of people using the results of full-scale experiments, involving a real pipe rack at a gas processing plant [2].Conclusions. The required fire resistance limits for pipe rack structures of a gas processing plant were identified. The calculations took account of the time needed to evacuate and rescue the personnel, as well as the pre-set reliability of structures, given that the personnel evacuation and rescue time in case of fire is identified in an experiment.


Sign in / Sign up

Export Citation Format

Share Document