scholarly journals The characteristics of microplasma discharge propagation over the titanium surface covered with a thin oxide film

2021 ◽  
Vol 9 (6) ◽  
pp. 449-463
Author(s):  
Vyacheslav Ivanov ◽  
Mikhail Konyzhev ◽  
Tatyana Kamolova ◽  
Anna Dorofeyuk

The propagation and structure of a microplasma discharge initiated in vacuum by a pulsed plasma flow with a density of 1013 cm–3 on the surface of a titanium sample covered with a thin continuous dielectric titanium oxide film with a shickness of 2–6 nm were studied experimentally when the electric current of the discharge changes from 50 A to 400 A. It was found that the microplasma discharge glow visually at the macroscale has a branched structure of the dendrite type, which at the microscale consists of a large number of brightly glowing “point” formations – cathode spots localized on the metal surface. The resulting erosion structure on the titanium surface is visually “identical” to the structure of the discharge glow and consists of a large number of separate non-overlapping microcraters with characteristic sizes from 0.1–3 μm, which are formed at the sites of localization of cathode spots at distances of up to 20 μm from each other. It was found that the propagation of a single microplasma discharge over the titanium surface covered with a thin oxide film a thickness of 2–6 nm occurs at an average velocity of 15–70 m/s when the amplitude of the discharge electric current changes in the range of 50–400 A. In this case, the microplasma discharge propagation on the microscale has a “jumping” character: the plasma of “motionless” burning cathode spots, during their lifetime 1 μs, initiates the excitation of new microdischarges, which create new cathode spots at localization distances of 1–20 μm from the primary cathode spots. This process repeated many times during a microplasma dis- charge pulse with a duration from 0.1 ms to 20 ms.

2000 ◽  
Vol 07 (01n02) ◽  
pp. 135-139 ◽  
Author(s):  
V. P. ZHDANOV ◽  
P. R. NORTON

A seminal model describing the kinetics of growth of thin oxide films on metal crystals was proposed by Cabrera and Mott (CM). The model is based on the assumption that the growth is limited by the field-facilitated activated jumps of metal ions located in steps on the metal–oxide interface. We generalize the CM model by (i) exploring the interplay of jumps of metal ions from the step and terrace sites at the metal–oxide interface, and (ii) scrutinizing the processes at the oxide–gas-phase interface. The former factor is found to change the physical meaning of the parameters in the CM growth law. The latter factor results in modification of the growth law. In particular, the oxidation kinetics becomes dependent on the O2 pressure. More specifically, the oxidation rate is predicted to increase with increasing pressure. This effect is, however, rather weak and becomes progressively weaker with increasing oxide film thickness.


1974 ◽  
Vol 13 (2) ◽  
pp. 367-368 ◽  
Author(s):  
Kazushige Matsumoto ◽  
Yuichi Haneta

ACS Photonics ◽  
2018 ◽  
Vol 5 (7) ◽  
pp. 2807-2815 ◽  
Author(s):  
Rodrigo Berte ◽  
Christopher R. Gubbin ◽  
Virginia D. Wheeler ◽  
Alexander J. Giles ◽  
Vincenzo Giannini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document