scholarly journals Assessing milk quality using the electronic nose

2007 ◽  
Author(s):  
◽  
Samantha Govender

There are many ways for milk and dairy products to develop flavour defects. Sensory evaluation, has been the traditional approach to characterize off flavours. The need for odour sensing devices becomes greater when volatile and semi-volatile organic compounds are present in the product in parts per billion or even in the parts per trillion concentration range that cause off flavours. Today, sophisticated, sensitive instrumental tests such as electronic nose technology coupled with gas chromatography are capable of detecting, identifying and quantifying the specific chemical agents responsible for off flavours. This study focused on the use of the electronic nose as a novel technology for the detection and monitoring of milk quality by testing the effects of heat treatment at 63˚C and shelf life. Microbiological testing, sensory evaluation and gas chromatographic analysis were carried out together with aroma profiling using the electronic nose to determine milk quality.

2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Jana Štefániková ◽  
Veronika Nagyová ◽  
Matej Hynšt ◽  
Dominika Kudláková ◽  
Július Árvay ◽  
...  

The aim of this work was to compare sensory evaluation and electronic nose technology used to assess aromas in dry hopped beers. An electronic nose based on gas chromatography was used for the first time. Hops varieties Amarillo, Cascade, Chinook, Kazbek and Mandarina Bavaria were used for the production of dry hopped beers and the Sladek variety was used for the control sample. The basic characteristics of the beers were determined, and the sensory evaluation performed by selected assessors was compared to the sensory assay using an electronic nose. Assessment of the aroma profile of dry hopped beers shows that the basic flavours of these beers, such as worty, yeasty and hoppy, were suppressed. Compared to the control sample, a significant grapefruit flavour was noted by the evaluators in Kazbek and Chinook beer samples. The most prominent determinant, compared to the control sample, was in general the citrus aroma. Based on the results of the principal component analysis, it can be concluded that there were statistically significant differences between the individual dry hopped beers and between them and the control sample with the exception of beers dry hopped with hops of the Amarillo and Cascade variety, which was also confirmed by the results of sensory evaluation (approximately the same scoring of the monitored descriptors).


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 35 ◽  
Author(s):  
Carlos Sánchez ◽  
J. Santos ◽  
Jesús Lozano

The increased occurrence of chronic diseases related to lifestyle or environmental conditions may have a detrimental effect on long-term health if not diagnosed and controlled in time. For this reason, it is important to develop new noninvasive early diagnosis equipment that allows improvement of the current diagnostic methods. This, in turn, has led to an exponential development of technology applied to the medical sector, such as the electronic nose. In addition, the appearance of this type of technology has allowed the possibility of studying diseases from another point of view, such as through breath analysis. This paper presents a bibliographic review of past and recent studies, selecting those investigations in which a patient population was studied with electronic nose technology, in order to identify potential applications of this technology in the detection of respiratory and digestive diseases through the analysis of volatile organic compounds present in the breath.


2020 ◽  
Vol 21 (24) ◽  
pp. 9416
Author(s):  
Johann-Christoph Licht ◽  
Hartmut Grasemann

Respiratory tract infections are common, and when affecting the lower airways and lungs, can result in significant morbidity and mortality. There is an unfilled need for simple, non-invasive tools that can be used to screen for such infections at the clinical point of care. The electronic nose (eNose) is a novel technology that detects volatile organic compounds (VOCs). Early studies have shown that certain diseases and infections can result in characteristic changes in VOC profiles in the exhaled breath. This review summarizes current knowledge on breath analysis by the electronic nose and its potential for the detection of respiratory diseases with and without infection.


2009 ◽  
Vol 76 (3) ◽  
pp. 365-371 ◽  
Author(s):  
Luca Falchero ◽  
Giacomo Sala ◽  
Alessandra Gorlier ◽  
Giampiero Lombardi ◽  
Michele Lonati ◽  
...  

The nutritional distinctiveness of pasture-fed dairy products is mainly influenced by the transfer of specific chemical compounds from the grass to the milk and by their effect on rumen microflora and animal metabolism. Thus, the pasture-fed origin has to be objectively proven, using fast and reproducible analytical methods applied to finished products, in order to protect consumers against potential frauds. In this work, Electronic Nose patterns of Alpine milks produced by cows grazingTrifolium alpinumandFestuca nigrescenspasture types have been examined, in order to test the potential use of this device for routine control analyses of the botanical origin of milk and dairy products. The data have been treated with different multivariate analyses (MANOVA, LDA) and chemometrics (MPLS). The results allow a very good classification of the milks, according to the two treatments. Such results demonstrate that this device could be successfully applied to PDO dairy products food chain as a tool for the determination of their dietary origin.


2007 ◽  
Author(s):  
◽  
Zeenat Harrichandparsad

Alicyclobacillus acidoterrestris is a spore-forming spoilage micro-organism found in fruit juices whose spores are not destroyed by typical pasteurisation. Once its spores outgrow and multiply in finished juice products, they produce two volatile taint compounds namely guaiacol and 2,6-dibromophenol. In the food industry margins for errors are small and monitoring of products to avert such errors is crucial. Conventional microbiological monitoring is one such technique for spoilage micro-organisms another being automated systems which can detect taints. Both these categories were evaluated in this study with the electronic nose and gas chromatograph being the specific automated systems being assessed. Sensory evaluation was also assessed as a diagnostic tool in the detection of taints. Isolation and identification of what was thought to be A. acidoterrestris was a laborious and expensive exercise which eventually proved inconclusive. A pure culture was purchased and juices were then inoculated with two levels of A. acidoterrestris spores and incubated. Juices from each level of inoculation were evaluated at different time intervals via the above-mentioned monitoring techniques. Of the three media assessed in the microbiological method, Bacillus acidoterrestris medium (BAM) was found to be the most effective for enumerating A. acidoterrestris followed by K-medium (KM) then Orange Serum Agar (OSA). While BAM was still indicating the presence of A. acidoterrestris KM and OSA were not (counts of <10cfu/g). This illustrated that this micro-organism could be easily overlooked if KM or OSA were being used to enumerate them. Considering that many workers actually do use KM and OSA as their media of choice in enumerating A. acidoterrestris (perhaps because BAM is very tedious to prepare) the cause for concern is a real one. Assessment of the resultant taints via sensory evaluation after inoculation and incubation reveals the inability of many panellists to detect taints at levels (as assessed by GC) far above their documented threshold values. While GC is an extremely useful and powerful tool, the level of expertise and skill required to use such an instrument cannot be overlooked nor can the expense involved. With regard to the electronic nose assessment for the presence of the volatile taint compounds, an important finding was that the electronic nose indicated significant differences between test and control samples when panellists performing sensory evaluation did not. This also correlated to an interval when enumeration on OSA illustrated no A. acidoterrestris after several days of inoculation and incubation and BAM and KM did. Without implying that the electronic nose has no drawbacks, it has proved, in this instance to be a simple and easy piece of equipment to use. It can be used to detect taints produced under simulated spoilage conditions at reduced analysis times, levels of expertise, cost and energy.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e17552-e17552
Author(s):  
R. V. Abdah-Bortnyak ◽  
H. Haick ◽  
S. Billan ◽  
G. Peng ◽  
E. Trock ◽  
...  

e17552 Background: Several studies have shown that characteristic patterns of volatile organic compounds (VOCs) appear to be elevated in the alveolar breath of cancer patients, as compared to healthy controls. It has been shown, that VOCs’ composition acts as a fingerprint for the distinction of a certain cancer from other cancers, including the cases where various cancers have similar type of biomarkers. The goal of the current study is to establish a background to ultimately achieve a simple-to-use device that can detect such patterns of cancer when exhaling into it. Methods: Breath samples were collected from 40 healthy volunteers and 75 patients having known conditions in six main categories: (I) 40 healthy controls; (II) 30 patients with lung cancer; (III) 15 patients with breast cancer; (IV) 20 patients with colon cancer; (V) 5 patients with prostate cancer; and (VI) 5 patients with head and neck cancer. The breath of the volunteers was examined by means of gas chromatography linked with mass spectrometry technique (GC-MS) as well as by an electronic nose device that is based on molecularly modified Au nanoparticles to check the feasibility of the electronic nose in cancer detection via breath samples Results: GC-MS results showed that each category of cancer has a unique pattern (or mixture) of VOCs. In parallel to these findings, results indicate the ability of nanomaterial-based electronic nose devices to differentiate between “healthy” and “cancerous” breath, and, furthermore, between the breath of patients with different cancer types, with >92% sensitivity. Conclusions: The electronic nose technology has a high potential for assessing various types of cancer via simple exhalation procedure. The results provide a launching pad towards obtaining an inexpensive, compact tool that is amenable to widespread screening and that has a potential for direct and real-time monitoring (2–3 minutes only). No significant financial relationships to disclose.


2020 ◽  
Vol 16 (4) ◽  
pp. 404-412 ◽  
Author(s):  
Ihab Alnajim ◽  
Manjree Agarwal ◽  
Tao Liu ◽  
YongLin Ren

Background: The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is one of the world’s most serious stored grain insect pests. A method of early and rapid identification of red flour beetle in stored products is urgently required to improve control options. Specific chemical signals identified as Volatile Organic Compounds (VOCs) that are released by the beetle can serve as biomarkers. Methods: The Headspace Solid Phase Microextraction (HS-SPME) technique and the analytical conditions with GC and GCMS were optimised and validated for the determination of VOCs released from T. castaneum. Results: The 50/30 μm DVB/CAR/PDMS SPME fibre was selected for extraction of VOCs from T. castaneum. The efficiency of extraction of VOCs was significantly affected by the extraction time, temperature, insect density and type of SPME fibre. Twenty-three VOCs were extracted from insects in 4 mL flask at 35 ± 1°C for four hours of extraction and separated and identified with gas chromatography-mass spectroscopy. The major VOCs or chemical signals from T. castaneum were 1-pentadecene, p-Benzoquinone, 2-methyl- and p-Benzoquinone, 2-ethyl. Conclusion: This study showed that HS-SPME GC technology is a robust and cost-effective method for extraction and identification of the unique VOCs produced by T. castaneum. Therefore, this technology could lead to a new approach in the timely detection of T. castaneum and its subsequent treatment.


2021 ◽  
pp. 130124
Author(s):  
Patrick P. Conti ◽  
Rafaela S. Andre ◽  
Luiza A. Mercante ◽  
Lucas Fugikawa-Santos ◽  
Daniel S. Correa

Sign in / Sign up

Export Citation Format

Share Document