scholarly journals An assessment of the conformational profile of bombesin and its mammalian analogues using computational chemistry methods

2011 ◽  
Author(s):  
◽  
Parul Sharma

Understanding the dynamics and mechanism of protein folding continues to be one of the central problems in molecular biology. Peptide folding experiments characterize the dynamics and molecular mechanisms of the early events of protein folding. However, generally the highly flexible nature of peptides makes their bioactive conformation assessment reasonably difficult as peptides fold at very fast rates experimentally, requiring probing on the nanosecond time resolution. On the other hand, determining the bioactive conformation of biological peptides is a requirement for the design of peptidomimetics in computer-aided drug design. Peptides offer a unique opportunity to bridge the gap between theoretical and experimental understanding of protein folding. Therefore, the present work focuses on the exploration of the conformational space of biologically active neuropeptides with the aim of characterizing their conformational profile. Specifically, bombesin, neuromedin B (NMB) and neuromedin C (NMC), have been chosen for the current investigations. These peptides are widely distributed in the gastrointestinal tract, spinal cord and brain, and are known to elicit various physiological effects, including inhibition of feeding, smooth muscle contraction, exocrine and endocrine secretions, thermoregulation, blood pressure and sucrose regulations and cell growth. These peptides act as a growth factor in a wide range of tumours including carcinomas of the pancreas, stomach, breast, prostate, and colon. This work is intended to get some insight into the performance of different procedures used to explore the configurational space to provide an adequate atomic description of these systems. Different methodological studies involving utilization of molecular dynamics (MD), multicanonical replica exchange molecular dynamics (REMD) and simulate annealing (SA) are undertaken to explore the folding characteristics and thermodynamics of these neuropeptides. MD and REMD calculations on bombesin peptide have revealed its dual conformational behaviour never discovered before and is described in chapter 3. These results explain the known structure-activity studies and open the door to the understanding of the affinity of this peptide to two different receptors: BB1 and BB2. In the case of NMC, REMD calculations are carried out in explicit and implicit solvents, using the Generalized Born (GB) surface area, and are then complemented with two additional MD simulations performed using Langevin and Berendsen thermostats. The results obtained clearly reveal that REMD, performed under explicit solvent conditions, is more efficient and samples preferentially folded conformations with a higher content of  and γ turns. Moreover, these results show good agreement with the experimental results supporting the role of two -turns for its biological action, as reported in the literature. Finally, the results obtained from MD, REMD and SA calculations on NMB reveal that the peptide has a tendency to adopt both turns and helices suggesting its two different receptor recognizing and binding conformations during its biological action. Hence, the present work provides comprehensive information about the conformational preferences of neuropeptides which could lead to a better understanding of their native conformations for future investigations and point the way towards developing their new antagonists.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Balint Dudas ◽  
Daniel Toth ◽  
David Perahia ◽  
Arnaud B. Nicot ◽  
Erika Balog ◽  
...  

AbstractSulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to a substrate. It has been previously suggested that a considerable shift of SULT structure caused by PAPS binding could control the capability of SULT to bind large substrates. We employed molecular dynamics (MD) simulations and the recently developed approach of MD with excited normal modes (MDeNM) to elucidate molecular mechanisms guiding the recognition of diverse substrates and inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational space of PAPS-bound SULT1A1, which has not been achieved up to now by using classical MD. The generated ensembles combined with docking of 132 SULT1A1 ligands shed new light on substrate and inhibitor binding mechanisms. Unexpectedly, our simulations and analyses on binding of the substrates estradiol and fulvestrant demonstrated that large conformational changes of the PAPS-bound SULT1A1 could occur independently of the co-factor movements that could be sufficient to accommodate large substrates as fulvestrant. Such structural displacements detected by the MDeNM simulations in the presence of the co-factor suggest that a wider range of drugs could be recognized by PAPS-bound SULT1A1 and highlight the utility of including MDeNM in protein–ligand interactions studies where major rearrangements are expected.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Cristian Privat ◽  
Sergio Madurga ◽  
Francesc Mas ◽  
Jaime Rubio-Martínez

Solvent pH is an important property that defines the protonation state of the amino acids and, therefore, modulates the interactions and the conformational space of the biochemical systems. Generally, this thermodynamic variable is poorly considered in Molecular Dynamics (MD) simulations. Fortunately, this lack has been overcome by means of the Constant pH Molecular Dynamics (CPHMD) methods in the recent decades. Several studies have reported promising results from these approaches that include pH in simulations but focus on the prediction of the effective pKa of the amino acids. In this work, we want to shed some light on the CPHMD method and its implementation in the AMBER suitcase from a conformational point of view. To achieve this goal, we performed CPHMD and conventional MD (CMD) simulations of six protonatable amino acids in a blocked tripeptide structure to compare the conformational sampling and energy distributions of both methods. The results reveal strengths and weaknesses of the CPHMD method in the implementation of AMBER18 version. The change of the protonation state according to the chemical environment is presumably an improvement in the accuracy of the simulations. However, the simulations of the deprotonated forms are not consistent, which is related to an inaccurate assignment of the partial charges of the backbone atoms in the CPHMD residues. Therefore, we recommend the CPHMD methods of AMBER program but pointing out the need to compare structural properties with experimental data to bring reliability to the conformational sampling of the simulations.


2021 ◽  
pp. 1-12
Author(s):  
Haiyan Li ◽  
Zanxia Cao ◽  
Guodong Hu ◽  
Liling Zhao ◽  
Chunling Wang ◽  
...  

BACKGROUND: The ribose-binding protein (RBP) from Escherichia coli is one of the representative structures of periplasmic binding proteins. Binding of ribose at the cleft between two domains causes a conformational change corresponding to a closure of two domains around the ligand. The RBP has been crystallized in the open and closed conformations. OBJECTIVE: With the complex trajectory as a control, our goal was to study the conformation changes induced by the detachment of the ligand, and the results have been revealed from two computational tools, MD simulations and elastic network models. METHODS: Molecular dynamics (MD) simulations were performed to study the conformation changes of RBP starting from the open-apo, closed-holo and closed-apo conformations. RESULTS: The evolution of the domain opening angle θ clearly indicates large structural changes. The simulations indicate that the closed states in the absence of ribose are inclined to transition to the open states and that ribose-free RBP exists in a wide range of conformations. The first three dominant principal motions derived from the closed-apo trajectories, consisting of rotating, bending and twisting motions, account for the major rearrangement of the domains from the closed to the open conformation. CONCLUSIONS: The motions showed a strong one-to-one correspondence with the slowest modes from our previous study of RBP with the anisotropic network model (ANM). The results obtained for RBP contribute to the generalization of robustness for protein domain motion studies using either the ANM or PCA for trajectories obtained from MD.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Svetlana N. Morozkina ◽  
Thi Hong Nhung Vu ◽  
Yuliya E. Generalova ◽  
Petr P. Snetkov ◽  
Mayya V. Uspenskaya

For a long time, the pharmaceutical industry focused on natural biologically active molecules due to their unique properties, availability and significantly less side-effects. Mangiferin is a naturally occurring C-glucosylxantone that has substantial potential for the treatment of various diseases thanks to its numerous biological activities. Many research studies have proven that mangiferin possesses antioxidant, anti-infection, anti-cancer, anti-diabetic, cardiovascular, neuroprotective properties and it also increases immunity. It is especially important that it has no toxicity. However, mangiferin is not being currently applied to clinical use because its oral bioavailability as well as its absorption in the body are too low. To improve the solubility, enhance the biological action and bioavailability, mangiferin integrated polymer systems have been developed. In this paper, we review molecular mechanisms of anti-cancer action as well as a number of designed polymer-mangiferin systems. Taking together, mangiferin is a very promising anti-cancer molecule with excellent properties and the absence of toxicity.


2021 ◽  
Author(s):  
Théo Jaffrelot Inizan ◽  
Frédéric Célerse ◽  
Olivier Adjoua ◽  
Dina El Ahdab ◽  
Luc-Henri Jolly ◽  
...  

We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs).


2017 ◽  
Author(s):  
Irfan Alibay ◽  
Kepa K. Burusco ◽  
Neil J. Bruce ◽  
Richard A. Bryce

<p>Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 ms trajectories; these simulations find a predominance of closed conformer and a range of low occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the <sup>4</sup>C<sub>1</sub> form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution, corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 ms unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.</p>


Author(s):  
S. Wu ◽  
P. Angelikopoulos ◽  
C. Papadimitriou ◽  
R. Moser ◽  
P. Koumoutsakos

We present a hierarchical Bayesian framework for the selection of force fields in molecular dynamics (MD) simulations. The framework associates the variability of the optimal parameters of the MD potentials under different environmental conditions with the corresponding variability in experimental data. The high computational cost associated with the hierarchical Bayesian framework is reduced by orders of magnitude through a parallelized Transitional Markov Chain Monte Carlo method combined with the Laplace Asymptotic Approximation. The suitability of the hierarchical approach is demonstrated by performing MD simulations with prescribed parameters to obtain data for transport coefficients under different conditions, which are then used to infer and evaluate the parameters of the MD model. We demonstrate the selection of MD models based on experimental data and verify that the hierarchical model can accurately quantify the uncertainty across experiments; improve the posterior probability density function estimation of the parameters, thus, improve predictions on future experiments; identify the most plausible force field to describe the underlying structure of a given dataset. The framework and associated software are applicable to a wide range of nanoscale simulations associated with experimental data with a hierarchical structure.


2021 ◽  
Author(s):  
kalyan immadisetty ◽  
Peter Kekenes-Huskey

The ATP activated P2X4 receptor plays a prominent role in pain perception and modulation and thus may constitute an alternative therapeutic target for controlling pain. Given the biomedical relevance of P2X4 receptors, and poor understanding of molecular mechanisms that describe its gating by ATP, a fundamental understanding of the functional mechanism of these channels is warranted. Through classical all-atom molecular dynamics (MD) simulations we investigated the number of ATP molecules required to open (activate) the receptor for it to conduct ions. Since crystal structures of human P2X4 are not yet available, the crystal structures of highly-homologous zebrafish P2X4 (zfP2X4) structures were utilized for this study. It has been identified that at least two ATP molecules are required to prevent the open state receptor from collapsing back to a closed state. Additionally, we have discovered two metal binding sites, one at the intersection of the three monomers in the ectodomain (MBS1) and the second one near the ATP binding site (MBS2), both of which are occupied by the potassium ions. This observation draws its comparison to the gulf coast P2X receptor that it possesses the same two metal binding sites, however, MBS1 and MBS2 in this receptor are occupied by zinc and magnesium, respectively.


2021 ◽  
Author(s):  
Theo Jaffrelot Inizan ◽  
Frédéric Célerse ◽  
Olivier Adjoua ◽  
Dina El Ahdab ◽  
Luc-Henri Jolly ◽  
...  

We provide an unsupervised adaptive sampling strategy capable of producing microseconds-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFF). The global exploration problem is decomposed into a set of separate MD trajectories that can be restarted within a selective process to achieve sufficient phase-space sampling. Accurate statistical properties can be obtained through reweighting. Within this highly parallel setup, the Tinker--HP package can be powered by an arbitrary large number of GPUs on supercomputers, reducing exploration time from years to days. This approach is used to tackle the urgent modeling problem of the SARS--CoV--2 Main Protease (Mpro) producing more than 38 microseconds of all-atom simulations of its apo, ligand-free, dimer using the high-resolution AMOEBA PFF. A first 15.14 microseconds simulation (physiological pH) is compared to available non--PFF long-timescale simulation data. A detailed clustering analysis exhibits striking differences between FFs, AMOEBA showing a richer conformational space. Focusing on key structural markers related to the oxyanion hole stability, we observe an asymmetry between protomers. One of them appears less structured resembling the experimentally inactive monomer for which a 6 microseconds simulation was performed as a basis of comparison. Results highlight the plasticity of Mpro active site. The C--terminal end of its less structured protomer is shown to oscillate between several states, being able to interact with the other protomer, potentially modulating its activity. Active and distal sites volumes are found to be larger in the most active protomer within our AMOEBA simulations compared to non-PFFs as additional cryptic pockets are uncovered. A second 17 microseconds AMOEBA simulation is performed with protonated His172 residues mimicking lower pH. Data show the protonation impact on the destructuring of the oxyanion loop. We finally analyze the solvation patterns around key histidine residues. The confined AMOEBA polarizable water molecules are able to explore a wide range of dipole moments, going beyond bulk values, leading to a water molecule counts consistent with experiment. Results suggest that the use of PFFs could be critical in drug discovery to accurately model the complexity of the molecular interactions structuring Mpro


Author(s):  
Fabian Keller ◽  
Andreas Heuer ◽  
Hans-Joachim Galla ◽  
Jens Smiatek

The interactions between DPPC lipid bilayers in different phases with ectoine, amino ectoine and water molecules are studied by means of atomistic molecular dynamics (MD) simulations and conceptual density functional theory (DFT) calculations.


Sign in / Sign up

Export Citation Format

Share Document