scholarly journals Impedance Spectroscopy applied to the study of high dilutions of Lycopodium clavatum

2021 ◽  
Vol 10 (36) ◽  
pp. 101-103
Author(s):  
Adriana Ramos de Miranda ◽  
Claudia Takano ◽  
Alvaro Vannucci

Introduction: The Impedance spectroscopy [1] is a technique mainly used to characterize the electrical behavior of solids or liquids samples. This particular technique involves placing the sample of material under investigation between two electrodes (capacitor plates), applying an AC voltage and observing the resulting response across the spectrum of impedance by plotting the real part (Z’) as a function of the imaginary part (Z”) of the impedance. Alternatively, graphs of either the real or the imaginary parts of the impedance can be constructed as a function of the applied voltage frequency. Comparative measurements previously carried out by Miranda et al [2]. have demonstrated clear differences between the impedance values of high dilutions of lithium chloride (LiCl) and the corresponding reference water samples (water which has undergone the same dinamization procedures but without the salt). In this paper the results obtained by applying the spectroscopy of impedance technique in high dilutions of Lycopodium clavatum - Lyc (from 15cH to 30 cH), in comparison to the reference waters, will be presented and discussed. Aims: The objective of this work is to measure the impedance components of both high dilutions of Lycopodium clavatum and reference water samples in the frequency range of 100Hz to 13Mhz, using a successful protocol of sample preparation which has already been used before2. Details of the experimental set-up can be found elsewhere[3]. Methodology: Thirty samples of Lyc solutions and thirty reference water samples were produced using the same preparation and measuring protocol. Both groups of liquid samples were measured for dynamizations ranging from 1cH to 30cH, in accordance to the Hahnemanian dynamization method and following the practice suggested by the Brazilian Homeopathic Pharmacopeia. The Lyc solutions were specifically compared to the reference water samples in the potencies of 15cH, 18cH, 23cH and 30cH. It is important to highlight here that all the Lyc solutions and the corresponding reference water samples measured were prepared from the same lot of initial distilled water and submitted to the same steps of dilution and succussion protocol3. Typically three impedance measurements were carried out for each investigated solution, starting with the highest potency. The sample holder (capacitor cell) used during the experiment was careful and systematically cleaned after each measurement. Results: The results obtained show that by choosing either the real part (Z’) or the imaginary component (Z”) of the impedance, it is possible to clearly differentiate the Lyc solutions from the corresponding reference water samples, for the potencies 15cH, 18cH and 30cH. For the potency 23cH, however, this difference is not very significant, as it can be observed in Figure 1. Conclusion: Impedance spectroscopy has demonstrated itself to be a powerful and sensitive technique for the physical characterization of Lycopodium clavatum in high dilutions. The differences obtained for the LiCl dynamizations and the corresponding pure water samples are noteworthy. Also, the results exhibit a non-monotonic behavior over the process of dynamization, indicating that the possibility of contamination during the samples manipulation can be ruled out.

1995 ◽  
Vol 411 ◽  
Author(s):  
J. Jamnik ◽  
J. Fleig ◽  
J. Maier

ABSTRACTTwo techniques for measurement of local electrical conductivity of inhomogeneous materials are described. I) A novel variant of the impedance technique for thin/thick film characterization was developed; due to the two-dimensionality of the cell set up, at different frequencies different parts of the material are probed. The technique was experimentally verified by measuring the position coordinate of a Ag strip artificially added to a AgCl film. Its application to the Ag/AgCl boundary is touched upon. II) Micro-electrodes were used to probe surface conductances and local subsurface conductivities. The technique was implemented by a home-made high impedance adapter and combined with AFM to measure the contact area. Several examples of application are shown, viz. measurements of a) the enhanced surface conductivity of mechanically polished AgCl crystals, b) the interdiffusion coefficient of Cd2+ in AgCl, and c) the grain conductivity of polycrystalline AgCl.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 602
Author(s):  
Elmar C. Fuchs ◽  
Jakob Woisetschläger ◽  
Adam D. Wexler ◽  
Rene Pecnik ◽  
Giuseppe Vitiello

A horizontal electrohydrodynamic (EHD) liquid bridge (also known as a “floating water bridge”) is a phenomenon that forms when high voltage DC (kV·cm−1) is applied to pure water in two separate beakers. The bridge, a free-floating connection between the beakers, acts as a cylindrical lens and refracts light. Using an interferometric set-up with a line pattern placed in the background of the bridge, the light passing through is split into a horizontally and a vertically polarized component which are both projected into the image space in front of the bridge with a small vertical offset (shear). Apart from a 100 Hz waviness due to a resonance effect between the power supply and vortical structures at the onset of the bridge, spikes with an increased refractive index moving through the bridge were observed. These spikes can be explained by an electrically induced liquid–liquid phase transition in which the vibrational modes of the water molecules couple coherently.


2021 ◽  
Vol 14 (6) ◽  
pp. 4755-4771
Author(s):  
William G. K. McLean ◽  
Guangliang Fu ◽  
Sharon P. Burton ◽  
Otto P. Hasekamp

Abstract. This study presents an investigation of aerosol microphysical retrievals from high spectral resolution lidar (HSRL) measurements. Firstly, retrievals are presented for synthetically generated lidar measurements, followed by an application of the retrieval algorithm to real lidar measurements. Here, we perform the investigation for an aerosol state vector that is typically used in multi-angle polarimeter (MAP) retrievals, so that the results can be interpreted in relation to a potential combination of lidar and MAP measurements. These state vectors correspond to a bimodal size distribution, where column number, effective radius, and effective variance of both modes are treated as fit parameters, alongside the complex refractive index and particle shape. The focus is primarily on a lidar configuration based on that of the High Spectral Resolution Lidar-2 (HSRL-2), which participated in the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, a combined project between NASA and SRON (Netherlands Institute for Space Research). The measurement campaign took place between October and November 2017, over the western region of the USA. Six different instruments were mounted on the aeroplane: four MAPs and two lidar instruments, HSRL-2 and the Cloud Physics Lidar (CPL). Most of the flights were carried out over land, passing over scenes with a low aerosol load. One of the flights passed over a prescribed forest fire in Arizona on 9 November, with a relatively higher aerosol optical depth (AOD), and it is the data from this flight that are focussed on in this study. A retrieval of the aerosol microphysical properties of the smoke plume mixture was attempted with the data from HSRL-2 and compared with a retrieval from the MAPs carried out in previous work pertaining to the ACEPOL data. The synthetic HSRL-2 retrievals resulted for the fine mode in a mean absolute error (MAE) of 0.038 (0.025) µm for the effective radius (with a mean truth value of 0.195 µm), 0.052 (0.037) for the real refractive index, 0.010 (7.20×10-3) for the imaginary part of the refractive index, 0.109 (0.071) for the spherical fraction, and 0.054 (0.039) for the AOD at 532 nm, where the retrievals inside brackets indicate the MAE for noise-free retrievals. For the coarse mode, we find the MAE is 0.459 (0.254) µm for the effective radius (with a mean truth value of 1.970 µm), 0.085 (0.075) for the real refractive index, 2.06×10-4 (1.90×10-4) for the imaginary component, 0.120 (0.090) for the spherical fraction, and 0.051 (0.039) for the AOD. A study of the sensitivity of retrievals to the choice of prior and first guess showed that, on average, the retrieval errors increase when the prior deviates too much from the truth value. These experiments revealed that the measurements primarily contain information on the size and shape of the aerosol, along with the column number. Some information on the real component of the refractive index is also present, with the measurements providing little on absorption or on the effective variance of the aerosol distribution, as both of these were shown to depend heavily on the choice of prior. Retrievals using the HSRL-2 smoke-plume data yielded, for the fine mode, an effective radius of 0.107 µm, a real refractive index of 1.561, an imaginary component of refractive index of 0.010, a spherical fraction of 0.719, and an AOD at 532 nm of 0.505. Additionally, the single-scattering albedo (SSA) from the HSRL-2 retrievals was 0.940. Overall, these results are in good agreement with those from the Spectropolarimeter for Planetary Exploration (SPEX) and Research Scanning Polarimeter (RSP) retrievals.


2017 ◽  
Vol 4 (1) ◽  
pp. 25-28
Author(s):  
Salvatore Chirumbolo

Homeopathy is fundamentally based on the assumption that a biological activity is borne by a chemical system made by a molecular solute within a solvent that is diluted and mechanically stressed an undefined number of times and then reaches a zero point where molecules disappear and the solvent is the only chemical species being left. With the exception of an author who recently stated “We have been working in this field for over 20 years [35], and are thus perfectly aware of the issues related to the “plausibility” of high-dilution pharmacology, particularly when using dilutions beyond Avogadro’s constant”, yet no evidence was reported to date about the real nature of homeopathic high dilutions.


2021 ◽  
Vol 262 ◽  
pp. 03017
Author(s):  
Hadis Rakhaev ◽  
Anzor Gyatov ◽  
Zalina Ivanova ◽  
Elvira Kokova ◽  
Akhmat Chochaev

Communication and logistics are one of the most important features of the markets; they permeate and constitute its content. Communication and logistics for commodity producers are also as important attribute as production itself, and sometimes even more. For this reason, commodity producers themselves directly and explicitly, but more often through other institutions (including the government), tend to set up stable exclusive communication systems and logistics. This article analyzes the state of the prospects for the formation of communications and logistics networks for agricultural products. The correlation of existing communications and logistics of agricultural products and other types of products (including finished industrial products of various purposes: from machinery, equipment, chemical products to defense, hydrocarbon, carbon and other raw materials, timber and other goods) is analyzed. The established linkages are revealed. They were quantified, calibrated and classified. The existing principles (comparative and absolute advantages) are reviewed and new principles are formulated (marginal player, marginal linkages), which describe the real situation in the markets of agricultural products more correctly. New criteria for grouping and reformatting existing communication and logistics networks, which make it possible to increase the competitiveness of domestic agricultural products are proposed.


2019 ◽  
Vol 18 ◽  
pp. 155
Author(s):  
G. Eleftheriou ◽  
C. Tsabaris ◽  
D. L. Patiris ◽  
E. Androulakaki ◽  
M. Kokkoris ◽  
...  

The evaluation of time period that meteoric water remains in the ground (residence time) before exiting in the open sea can be a valuable information for the submarine groundwater discharges (SGD) in the costal zones. Coastal waters contain elevated dissolved activities of radium isotopes compared to the open ocean, where excess activities are zero. Lately it has been shown by Moore et al., that residence time can be estimated by a model based on radium radioisotopes ratio reduction throughout the coast. However the standard methods for the estimation of radium isotopes concentration in the water are sophisticated, time consuming or require big amount of sample. Hereby, a method based on the direct gamma ray spectrometry of untreated water samples from coastal areas is applied to determine the residence time of the SGD. Efficiency calibration of the spectrometry set up has been performed for two different volumetric sample geometries, using 152Eu/154Eu solution as reference source. In order to ensure the reliability of the method, the background courting rate magnitude and variance through time have been defined for the radioisotopes of interest. Additionally, the minimum detectible activity (MDA) of the measuring system was determined, in Becquerel per cubic meter, as a function of energy in water samples. The developed method was applied and validated for water samples from the submarine spring in Stoupa Bay, southwestern Peloponnesus. The defined residence time varies from 3 to 6 days, being in good agreement with the results of the standard geological pigment-tracer method.


Author(s):  
David Krackhardt ◽  
Jeffrey R. Hanson

Many executives invest considerable resources in restructuring their companies, drawing and redrawing organizational charts only to be disappointed by the results. That’s because much of the real work of companies happens despite the formal organization. Often what needs attention is the informal organization, the networks of relationships that employees form across functions and divisions to accomplish tasks fast. These informal networks can cut through formal reporting procedures to jump start stalled initiatives and meet extraordinary deadlines. But informal networks can just as easily sabotage companies’ best laid plans by blocking communication and fomenting opposition to change unless managers know how to identify and direct them. Learning how to map these social links can help managers harness the real power in their companies and revamp their formal organizations to let the informal ones thrive. If the formal organization is the skeleton of a company, the informal is the central nervous system driving the collective thought processes, actions, and reactions of its business units. Designed to facilitate standard modes of production, the formal organization is set up to handle easily anticipated problems. But when unexpected problems arise, the informal organization kicks in. Its complex webs of social ties form every time colleagues communicate and solidify over time into surprisingly stable networks. Highly adaptive, informal networks move diagonally and elliptically, skipping entire functions to get work done. Managers often pride themselves on understanding how these networks operate. They will readily tell you who confers on technical matters and who discusses office politics over lunch. What’s startling is how often they are wrong. Although they may be able to diagram accurately the social links of the five or six people closest to them, their assumptions about employees outside their immediate circle are usually off the mark. Even the most psychologically shrewd managers lack critical information about how employees spend their days and how they feel about their peers. Managers simply can’t be everywhere at once, nor can they read people’s minds. So they’re left to draw conclusions based on superficial observations, without the tools to test their perceptions.


2014 ◽  
Vol 12 (1) ◽  
pp. 29-38
Author(s):  
Silvanus Teneng Kiyang ◽  
Robert Van Zyl

Purpose – The purpose of this work is to assess the influence of ambient noise on the performance of wireless sensor networks (WSNs) empirically and, based on these findings, develop a mathematical tool to assist technicians to determine the maximum inter-node separation before deploying a new WSN. Design/methodology/approach – A WSN test platform is set up in an electromagnetically shielded environment (RF chamber) to accurately control and quantify the ambient noise level. The test platform is subsequently placed in an operational laboratory to record network performance in typical unshielded spaces. Results from the RF chamber and the real-life environments are analysed. Findings – A minimum signal-to-noise ratio (SNR) at which the network still functions was found to be of the order 30 dB. In the real-life scenarios (machines, telecommunications and computer laboratories), the measured SNR exceeded this minimum value by more than 20 dB. This is due to the low ambient industrial noise levels observed in the 2.4 GHz ISM band for typical environments found at academic institutions. It, therefore, suggests that WSNs are less prone to industrial interferences than anticipated. Originality/value – A predictive mathematical tool is developed that can be used by technicians to determine the maximum inter-node separation before the WSN is deployed. The tool yields reliable results and promises to save installation time.


Sign in / Sign up

Export Citation Format

Share Document