scholarly journals The content of chosen chemical elements in wool of sheep of different origins and breeds

2009 ◽  
Vol 52 (4) ◽  
pp. 410-418 ◽  
Author(s):  
B. Patkowska-Sokoła ◽  
Z. Dobrzański ◽  
K. Osman ◽  
R. Bodkowski ◽  
K. Zygadlik

Abstract. The following chemical elements in sheep wool originating from Poland (Polish Mountain Sheep), Greece (Karagounico breed), and Syria (Awassi breed) were analysed: macroelements (Ca, P, Na, K, Mg, S), trace elements (Al, Ba, Co, Cu, Fe, Mn, Mo, Sr, Ti, Zn) and heavy metals (As, Cd Hg, Pb). Some statistically significant differences were observed between the content of the examined elements in sheep wool collected in the above countries. Sulphur, calcium, sodium and potassium were found in the highest amounts, while arsenic, cadmium and mercury occurred in the lowest quantity.

Author(s):  
Sayyed Mohammad Ali Noori ◽  
Mohammad Hashemi ◽  
Sajjad Ghasemi

Abstract: Saffron is one of the most expensive spices in the world, and its popularity as a tasty food additive is spreading rapidly through many cultures and cuisines. Minerals and heavy metals are minor components found in saffron, which play a key role in the identification of the geographical origin, quality control, and food traceability, while they also affect human health. The chemical elements in saffron are measured using various analytical methods, such as techniques based on spectrometry or spectroscopy, including atomic emission spectrometry, atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The present study aimed to review the published articles about heavy metals and minerals in saffron across the world. To date, 64 chemical elements have been found in different types of saffron, which could be divided into three groups of macro-elements, trace elements, and heavy metals (trace elements with a lower gravity/greater than five times that of water and other inorganic sources). Furthermore, the chemical elements in the saffron samples of different countries have a wide range of concentrations. These differences may be affected by geographical condition such as physicochemical properties of the soil, weather and other environmental conditions like saffron cultivation and its genotype.


Author(s):  
V.I. Korchin ◽  
Yu.S. Makaeva ◽  
T.Ya. Korchina ◽  
E.A. Shagina

Тhe analysis of metabolic violations and microelement disbalance is presented for the workers of the fillings stations on territory of KHMAO – Yugra. The expressed changes are set in the processes of oxidizing stress and antioxidant defence. In the hairs was registered the meaningful exceeding of concentration of toxic chemical elements (cadmium, lead) and iron possessing pro-oxidant properties on a background reliable to low concentration of the universal antagonist of heavy metals – by a calcium and trace elements possessing antioxidant activity (selenium, zinc) – in the organism.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1518 ◽  
Author(s):  
María D. Navarro-Hortal ◽  
Francisco J. Orantes-Bermejo ◽  
Cristina Sánchez-González ◽  
Alfonso Varela-López ◽  
Francesca Giampieri ◽  
...  

Beeswax is useful for the beekeeping sector but also for the agro-food, pharmaceutical or cosmetics sectors. Frequently, this bee product is contaminated with pesticides reducing its utility and causing the decline in its market. This study aimed to prove the effectiveness of an industrial-scale decontamination method in removing acaricides from beeswax. Chlorfenvinphos and coumaphos decrease was higher than 90%, whereas tau fluvalinate decrease was only 30%. No changes were observed in the beeswax content of hydrocarbons and monoesters, whereas a decrease in the concentrations of Ca, Fe, Zn, Hg, Mn and P, and an increase in the concentrations of As and Si were found after the decontamination. Filtration reduced total phenolics, flavonoids and the antioxidant capacity of the lipophilic extract. These results demonstrate that the industrial method used was as effective as the method previously tested on a laboratory scale. The study also contributes to a better knowledge and characterization of beeswax, specially related to trace and ultra-trace elements and antioxidant capacity. Moreover, it offers the chance to further develop a method to effectively detect wax adulterations based on the chemical elements profile.


2015 ◽  
Vol 15 (1) ◽  
pp. 219-233 ◽  
Author(s):  
Md. Solayman ◽  
Md. Asiful Islam ◽  
Sudip Paul ◽  
Yousuf Ali ◽  
Md. Ibrahim Khalil ◽  
...  

2021 ◽  
Vol 54 (2C) ◽  
pp. 80-87
Author(s):  
Abbas R. Ali

Geophagy is the eating of non-food earthy matters practice (such as clay), which is performed especially in humans, to augment a scanty or mineral-deficient diet or as part of a cultural tradition. Geophagy, the intentional ingestion of clay or soil, is a prevalent practice among animals and humans, especially is more common in young ages, such as children and among pregnant women with a young age. In spite of some well documented cases, the motivations of this practice and its consequences on the status of health of the consumer are still unclear. This study focused on the source of heavy metals and its health impact because of the importance of the topic in the environmental hazards, especially as this addictive phenomenon may not be well known among families in our societies. During this study, twenty-four samples of marl were collected within the rock sequences of the Fatha Formation in the Kirkuk and Diyala, which are used in eating (mud eating disease) in these regions. The samples were subjected to laboratory studies including chemical analyses, to determine their contents of trace elements. The laboratory analytical data showed that these muds (marl) contain different concentrations of chemical elements such as (Co, Cr, Ni, Cu, and Zn) which are among the heavy toxic elements and harmful to human health. A close look at the analytical data and results of the statistical and environmental factors, it is found that the marl (geophagia) consumption in terms of its content of trace elements, poses health risks to the consumer. However, it is worth mentioning to say that Geophagia practice may contribute large levels of the most beneficial elements such as Ca, Fe, K, Na, Cu, and Zn, supplying in demand mineral nutrients in the human body.


Author(s):  
Alla Savenko ◽  
Alla Savenko ◽  
Oleg Pokrovsky ◽  
Oleg Pokrovsky ◽  
Irina Streletskaya ◽  
...  

The distribution of dissolved chemical elements (major ions, nutrients, and trace elements) in the Yenisei River estuary and adjacent water area in 2009 and 2010 are presented. These results were compared to the data obtained during previous hydrochemical studies of this region. The transport of major cations (Na, K, Mg, Ca) and some trace elements (Rb, Cs, Sr, B, F, As, Mo, U) in the estuary follows conservative mixing. Alkalinity also belongs to conservative components, however this parameter exhibits substantial spatial heterogeneity caused by complex hydrological structure of the Yenisei Bay and adjoining part of the Kara Sea formed under the influence of several sources of desalination and salty waters inflow. Concentrations of Pmin, Si, and V in the desalinized waters of photic layer decrease seaward owing to uptake by phytoplankton. The losses of these elements reach 30–57, 30, and 9% of their supply by river runoff, respectively. The content of dissolved phosphates and vanadium in the intermediate and near-bottom layers of the Yenisei River estuary strongly increases with salinity due to regeneration of precipitated organic matter, whereas silica remineralization is much less pronounced. Barium is characterized by additional input of dissolved forms in the mixing zone in the quantity comparable to that carried out by river runoff. This may be caused by its desorption from river suspended matter due to ion exchange. The transport of dissolved Al and Mn in the estuarine zone is probably controlled by the coagulation and flocculation of organic and organomineral colloids, which is indicated by a decrease in the concentration of these elements at the beginning of the estuary (31 and 56%, respectively) followed by a stable concentration further seaward.


2020 ◽  
Vol 16 (5) ◽  
pp. 815-823
Author(s):  
Md. Bayejid Hosen ◽  
Abu T.M. Abdullah ◽  
Md. Z.H. Howlader ◽  
Yearul Kabir

Background: Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals, minerals and trace elements in cereals consumed by Dhaka city residents. Methods: One hundred and sixty cereal samples were collected for eight (08) composited samples and analyzed for the determination of sixteen elements. Heavy metals were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and other elements were determined by Atomic Absorption Spectrometry (AAS). Results: The average concentrations of elements in cereals fall within the safe limit except for Pb, Cr, Na and Mg, which exceeded the safe limits. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and As (13.6 μg) through cereals was below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). The dietary intake of Na (1860.0 mg), Mg (347.0 mg) and Mn (4600.0 μg) exceeded the toxic level while K (829 mg) was below the RDA. Conclusion: As the main meal of average Bangladeshi people is boiled rice served with some vegetables, our findings indicate that the residents of Dhaka city are at risk from Pb and Cr contamination and their dietary need for some important minerals and trace elements is not fulfilled by cereals.


Sign in / Sign up

Export Citation Format

Share Document