scholarly journals Mice long-term selected for high body mass are more susceptible to body fat deposition in response to a high fat diet due to insufficient increase in heat production

2012 ◽  
Vol 55 (6) ◽  
pp. 633-646
Author(s):  
M. Derno ◽  
M. Langhammer ◽  
U. Renne ◽  
U. Hennig ◽  
S. Kuhla ◽  
...  

Abstract. Using a mouse model long-term selected for high body mass (DU6i), we investigated if their higher degree of body fat as compared to unselected controls (DUKsi) was due to a greater fat accumulation, attributable to differences in substrate oxidation in response to a higher fat intake. We measured energy expenditure (EE) and substrate oxidation by indirect calorimetry at the ages of 42 d and 98 d in response to a fat rich diet compared to a standard diet (F, 20 %; C, 5 % fat) introduced at weaning (21 d). The EE to food energy intake ratio (Q) was calculated and uncoupling protein (UCP1) mRNA expression was analysed in brown adipose tissue in male mice of both strains. The F diet increased body and fat mass in DU6i (P<0.05) but not in DUKsi. Energy intake was not influenced by diet in both strains, but EE was lower in DU6i than in controls (P<0.05). In contrast to DU6i, fat oxidation was higher in DUKsi mice fed the F diet until the age of 42 d (P<0.05). At the age of 42 d, the Q value was lower in DU6i, and higher with F diet irrespective of strain. UCP1 mRNA expression was twice as high in DUKsi as in DU6i (P<0.05). Between 42 d and 98 d of age, DU6i mice were more susceptible to body mass gain and fat deposition in response to the F diet due to insufficient increase in fat oxidation and energy expenditure possibly related to lower UCP1 mRNA expression.

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Stephanie M. Mutchler ◽  
Mahpara Hasan ◽  
Megan M. Mutchler ◽  
Bingxian Xie ◽  
Amanda Mills ◽  
...  

Author(s):  
Carla El-Mallah ◽  
Marie-Elizabeth Ragi ◽  
Nehmat El-Helou ◽  
Omar Obeid

<b><i>Introduction:</i></b> Humans are known to adapt to external temperature variations by altering energy intake, expenditure, and body fat storage for insulation [<xref ref-type="bibr" rid="ref1">1</xref>, <xref ref-type="bibr" rid="ref2">2</xref>]. However, it is not clear whether the temperature of ingested water would induce such effects. Similarly, the involvement of the temperature of the ingested beverage has not been addressed in terms of body weight changes [<xref ref-type="bibr" rid="ref3">3</xref>]. <b><i>Objectives:</i></b> This study was to investigate the effect of the ingestion of plain or sweetened water with varied temperatures on growth measures of rats. <b><i>Methods:</i></b> Approval was obtained from the Institutional Animal Care and Use Committee of the American University of Beirut. After a 1-week adaptation period, 5- to 6-week-old male Sprague-Dawley rats were randomly divided into their respective experimental groups, housed individually (22 ± 1°C, reverse light cycle 12:12 h dark/light, light off at 10:00 a.m.) with free access to food and beverage for 8 weeks. <b><i>Experiment 1 (Plain Water):</i></b> Two groups of rats (<i>n</i> = 9) consumed room-temperature [∼22°C] (NW) or cold [∼5°C] (CW) water. <b><i>Experiment 2 (Sweetened Water):</i></b> Four groups of rats were offered sweetened water for 12 h, followed by plain water; (1) 10% sucrose + cold temperature (CS, <i>n</i> = 7), (2) 10% sucrose + room temperature (NS, <i>n</i> = 8), (3) 0.05% acesulfame K + cold temperature (CA, <i>n</i> = 7), and 4) 0.05% acesulfame K + room temperature (NA, <i>n</i> = 8). Food and beverage intake, body weight, and body composition were monitored using NMR minispec (LF110 Body Composition Analyzer, Bruker, USA) and energy expenditure was calculated based on the equation developed by Ravussin et al. [<xref ref-type="bibr" rid="ref4">4</xref>]. Significance was set at a <i>p</i> value &#x3c;0.05. <b><i>Results:</i></b> Experiment 1: Body weight changes were similar between groups (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 1a). In the CW group, lean body mass (%) was significantly higher, while body fat (%) was lower than the NW (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 1b, c). These changes may relate to the calculated total energy expenditure [NW: 66.73 ± 4.49 kcal/day and CW: 73.75 ± 3.92 kcal/day) (<i>p</i> value = 0.003) since energy intake (NW: 89.97 ± 7.63 kcal/day vs. CW: 93.29 ± 6.26 kcal/day, <i>p</i> value = 0.329) was similar between groups. Experiment 2: Body weight of the CA group was higher than that of the other groups (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 2a). Lean body mass (%) of the sucrose-sweetened water groups (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 2b, c) was significantly higher, while body fat (%) was lower than that of the non-caloric sweetened water groups; these were not affected by the temperature of the beverage. Those variations are mostly explained by the differences in energy expenditure (<i>p</i> value temperature × sweetener = 0.015), as energy intake was not significantly different between groups. <b><i>Conclusion:</i></b> Cold plain water decreased body fat and increased lean body mass with no effect on total body weight. Sucrose-sweetened water had a better impact on body composition irrespective of the temperature of the beverage. The beneficial effects are mainly due to increased energy expenditure rather than variations in energy intake. Thus, the energy cost of warming the water seems to have been derived from an increase in fat oxidation.


2007 ◽  
Vol 103 (5) ◽  
pp. 1576-1582 ◽  
Author(s):  
Edward L. Melanson ◽  
William T. Donahoo ◽  
Gary K. Grunwald ◽  
Robert Schwartz

The purpose of this study was to compare 24-h substrate oxidation in older (OM; 60–75 yr, n = 7) and younger (YM; 20–30 yr, n = 7) men studied on sedentary day (Con) and on a day with exercise (Ex; net energy expenditure = 300 kcal). Plasma glucose and free fatty acids were also measured at several time points during the 24-h measurement. Weight was not different in OM and YM (means ± SD; 84.8 ± 16.9 vs. 81.4 ± 10.4 kg, respectively), although percent body fat was slightly higher in OM (25.9 ± 3.5 vs. 21.9 ± 9.7%; P = 0.17).Values of 24-h energy expenditure did not differ in OM and YM on the Con (means ± SE; 2,449 ± 162 vs. 2,484 ± 104 kcal/day, respectively) or Ex (2,902 ± 154 vs. 2,978 ± 122 kcal/day) days. Under both conditions, 24-h respiratory quotient was significantly lower and fat oxidation significantly higher in OM. Glucose concentrations were not different at any time point, but plasma free fatty acid concentrations were higher in OM, particularly following meals. Thus, under these controlled conditions, 24-h fat oxidation was not reduced and was in fact greater in OM. We speculate that differences in the availability of circulating free fatty acids in the postprandial state contributed to the observed differences in 24-h fat oxidation in OM and YM.


2021 ◽  
Vol 9 (2) ◽  
pp. 97-104
Author(s):  
Fillah Fithra Dieny ◽  
A Fahmy Arif Tsani ◽  
Umu Faradilla ◽  
Ayu Rahadiyanti

Background: Santriwati (Islamic female student), women of reproductive age, were susceptible to experienced Chronic Energi Deficiency (CED). CED reflects the low energy availability of someone who can risk reducing bone density. Objectives: This study aimed to analyze the differences in body mass index, body fat percentage, hemoglobin levels, energy availability, and bone mineral density of female students who experienced CED risk and not experienced CED risk.Materials and Methods: The research design was a cross-sectional study, with 101 female students as subjects who were selected by random sampling. The research was conducted from February to March 2019 at the Kyai Galang Sewu Islamic Boarding School, Semarang. CED risk data was taken using the upper arm circumference measurement. Percent body fat and BMI data were taken using BIA. Energy availability data is obtained from the difference between energy intake (energy intake) and energy output (energy expenditure through physical activity) divided by Fat-Free Mass (FFM). Energy intake data was taken using the SQ-FFQ questionnaire, and energy expenditure was calculated using the 24-hour activity record form. Anemia data were collected using strip hemoglobin measurements. Bone density data were taken using the Osteosys Sonost 3000 densitometer. Bivariate analysis used the Independent T-Test.Results: A total of 57.2% of subjects experienced anemia. Subjects who had underweight nutritional status were 20.8%. Santriwati experienced osteopenia as much as 13.9%. There was no difference in bone density and hemoglobin levels between female students who were at risk of CED and not CED risk (p> 0.05), but there were differences in energy availability, body fat percentage, BMI between those at risk of CED and not CED risk (p <0.05)Conclusion: subjects at risk of CED (Lila <23.5 cm) had lower energy availability, body fat, and BMI than subjects who were not at risk of CED.


1998 ◽  
Vol 76 (2) ◽  
pp. 237-241 ◽  
Author(s):  
L J Martin ◽  
PJH Jones ◽  
R V Considine ◽  
W Su ◽  
N F Boyd ◽  
...  

To investigate whether circulating leptin levels are associated with energy expenditure in healthy humans, doubly labeled water energy measurements and food intake assessment were carried out in 27 women (mean age, 48.6 years; weight, 61.9 kg; body mass index, 23.2). Energy expenditure was determined over 13 days. Food intake was measured by 7-day food records. Leptin was measured by radioimmunoassay. Leptin level was strongly associated with percentage body fat (r = 0.59; p < 0.001), fat mass (r = 0.60; p < 0.001), and body mass index (r = 0.41; p = 0.03), but no correlation was observed with energy expenditure (r = 0.02; p = 0.93). After controlling for percentage body fat, a positive association of leptin level with energy expenditure of marginal significance (p = 0.06) was observed. There were no significant univariate associations of age, physical activity, lean body mass, height, or dietary variables with leptin level. When controlling for body fat, a significant positive correlation was observed for percent energy from carbohydrate and negative correlations with dietary fat and alcohol intake. These findings confirm previous associations between leptin and body fat content and suggest a relationship between serum leptin and energy expenditure level in healthy humans.Key words: leptin, energy expenditure, body composition, diet.


Author(s):  
Boštjan Jakše ◽  
Barbara Jakše ◽  
Stanislav Pinter ◽  
Jernej Pajek ◽  
Nataša Fidler Mis

Failure of various weight-loss programs and long-term maintenance of favorable body composition in all kinds of people is high, since the majority go back to old dietary patterns. Many studies have documented the efficacy of a plant-based diet (PBD) for body mass management, but there are opinions that maintaining a PBD is difficult. We aimed to evaluate the long-term success of a whole-food plant-based (WFPB) lifestyle program. We investigated the differences in the obesity indices and lifestyle of 151 adults (39.6 &plusmn; SD 12.5 years), who were on our program for short (0.5&ndash;&lt;2 years), medium (2&ndash;&lt;5 years), or long term (5&ndash;10 years). Body-composition changes were favourable for all three groups, both genders and all participants. There were no differences in relative body-composition changes (BMI, body fat percentage and muscle mass index (MMI)) between the three groups. All participants improved their BMI (baseline mean pre-obesity BMI range (kg/m2): 26.4 &plusmn; 5.6 to normal 23.9 &plusmn; 3.8, p &lt; 0.001), decreased body mass (&ndash;7.1 &plusmn; 8.3 kg, p &lt; 0.001) and body fat percentage (&ndash;6.4 &plusmn; 5.6 % points, p &lt; 0.001). 85.6% (101 out of 118) of parents of underage children (&lt; 18 years), introduced WFPB lifestyle to their children. Those with the highest BMI at baseline lost the most of: a) BMI units, b) total body mass and c) body fat (a) (kg/m2) (&ndash;5.6 &plusmn; SD 2.9, &ndash;2.4 &plusmn; 1.8 and &ndash;0.9 &plusmn; 1.5), b) (kg) (&ndash;16.1 &plusmn; SD 8.8, &ndash;7.1 &plusmn; 5.4 and &ndash;2.5 &plusmn; 4.5) and c) (% points) (&ndash;9.5 &plusmn; SD 5.7, &ndash;6.6 &plusmn; 4.6 and &ndash;4.7 &plusmn; 5.3) for participants who had baseline BMI in obese, overweight and normal range, respectively; pbaseline vs. current &lt; 0.001 for all). WFPB lifestyle program provides long-term lifestyle changes for reversal of obesity and is effective transferred to the next generation.


2000 ◽  
Vol 85 (3) ◽  
pp. 1087-1094 ◽  
Author(s):  
Christian Weyer ◽  
Richard E. Pratley ◽  
Arline D. Salbe ◽  
Clifton Bogardus ◽  
Eric Ravussin ◽  
...  

2003 ◽  
Vol 285 (4) ◽  
pp. E775-E782 ◽  
Author(s):  
Joris Hoeks ◽  
Marleen A. van Baak ◽  
Matthijs K. C. Hesselink ◽  
Gabby B. Hul ◽  
Hubert Vidal ◽  
...  

In humans, β-adrenergic stimulation increases energy and fat metabolism. In the case of β1-adrenergic stimulation, it is fueled by an increased lipolysis. We examined the effect of β2-adrenergic stimulation, with and without a blocker of lipolysis, on thermogenesis and substrate oxidation. Furthermore, the effect of β1-and β2-adrenergic stimulation on uncoupling protein 3 (UCP3) mRNA expression was studied. Nine lean males received a 3-h infusion of dobutamine (DOB, β1) or salbutamol (SAL, β2). Also, we combined SAL with acipimox to block lipolysis (SAL+ACI). Energy and substrate metabolism were measured continuously, blood was sampled every 30 min, and muscle biopsies were taken before and after infusion. Energy expenditure significantly increased ∼13% in all conditions. Fat oxidation increased 47 ± 7% in the DOB group and 19 ± 7% in the SAL group but remained unchanged in the SAL+ACI condition. Glucose oxidation decreased 40 ± 9% upon DOB, remained unchanged during SAL, and increased 27 ± 11% upon SAL+ACI. Plasma free fatty acid (FFA) levels were increased by SAL (57 ± 11%) and DOB (47 ± 16%), whereas SAL+ACI caused about fourfold lower FFA levels compared with basal levels. No change in UCP3 was found after DOB or SAL, whereas SAL+ACI downregulated skeletal muscle UCP3 mRNA levels 38 ± 13%. In conclusion, β2-adrenergic stimulation directly increased energy expenditure independently of plasma FFA levels. Furthermore, this is the first study to demonstrate a downregulation of skeletal muscle UCP3 mRNA expression after the lowering of plasma FFA concentrations in humans, despite an increase in energy expenditure upon β2-adrenergic stimulation.


2005 ◽  
Vol 51 (2) ◽  
pp. 248-252 ◽  
Author(s):  
Ushio Harada ◽  
Akiro Chikama ◽  
Shinichiro Saito ◽  
Hideto Takase ◽  
Tomonori Nagao ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Russell Rising ◽  
Gul Tiryaki Sonmez

Background. Malnourished infants are small for age and weight.Objectives. Determine profiles in 24-hour energy metabolism in recovering malnourished infants and compare to similarly aged healthy controls.Methods. 10 malnourished infants (58.1±5.9 cm,7.7±5.6months) were healthy prior to spending 22 hours in the Enhanced Metabolic Testing Activity Chamber for measurement of EE (kcal/min), sleeping metabolic rate (SMR; kcal/min), respiratory quotient (RQ;VCO2/VO2), and physical activity (PA; oscillations in wt/min/kg body weight). Metabolic data were extrapolated to 24 hours (kcal/kg/d). Energy intake (kcal/kg/d) and the proportions (%) of carbohydrate, protein, and fat were calculated. Anthropometrics for malnourished infants were obtained. Statistical differences (P<.05) between groups were determined (SPSS, version 13).Results. In comparison to controls, malnourished infants were lighter (4.1±1.2versus7.3±0.8 kg;P<.05), had less body fat % (10.3±7.6versus25.7±2.5), and lower BMI (12.0±1.7versus15.5±1.5;P<.05). In contrast, they had greater energy intake (142.7±14.6versus85.1±25.8;P<.05) with a greater percentage of carbohydrates (55.1±3.9versus47.2±5.2;P<.05). However, malnourished infants had greater 24-hour EE (101.3±20.1versus78.6±8.4;P<.05), SMR (92.6±17.1versus65.0±3.9;P<.05), and RQ (1.00±0.13versus0.86±0.08;P<.05) along with a lower amount of PA (2.3±0.94versus4.0±1.5;P<.05).Conclusions. Malnourished infants require more energy, possibly for growth.


Sign in / Sign up

Export Citation Format

Share Document